Abstract

Some effects on the properties of electron-beam evaporated thin films produced by ion bombardment of the growing film are reported. Substantial increases in the packing densities of SiO2, TiO2, and ZrO2 films have been produced as measured by the reduction in the adsorption of moisture when the films are exposed to a humid atmosphere. In a ZrO2–SiO2 multilayer interference filter, changes in the wavelength of the peak transmittance on exposure to the atmosphere have been reduced from 8 nm for films deposited without ion bombardment to <1 nm for ion-beam-assisted films.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Pulker, E. Jung, Thin Solid Films 9, 57 (1971).
    [CrossRef]
  2. S. Ogura, PhD Thesis, Newcastle-upon-Tyne Polytechnic (1975).
  3. S. Ogura, H. A. Macleod, Thin Solid Films 34, 371 (1976).
    [CrossRef]
  4. J. M. Pearson, Thin Solid Films 6, 349 (1970).
    [CrossRef]
  5. K. H. Guenther, H. K. Pulker, Appl. Opt. 15, 2992 (1976).
    [CrossRef] [PubMed]
  6. R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).
  7. B. A. Moochan, A. V. Demshishin, Fiz. Met. Metalloved. 28, 653 (1969).
  8. J. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).
    [CrossRef]
  9. S. Aisenberg, R. W. Chabot, J. Vac. Sci. Technol. 10, 104 (1973).
    [CrossRef]
  10. S. Gautherin, C.h.r. Weissmantel, Thin Solid Films 50, 135 (1978).
    [CrossRef]
  11. M. Marinov, Thin Solid Films 46, 267 (1977).
    [CrossRef]
  12. E. H. Hirsch, I. K. Varga, Thin Solid Films 69, 99 (1980).
    [CrossRef]
  13. J. Ebert, Proc. Soc. Photo-Opt. Instrum. Eng. 325, (1982), In press.
  14. K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
    [CrossRef]
  15. W. G. Sainty, in Proceedings, Third Conference on Science and Technology (ANZAAS, Canberra, 1978).
  16. J. E. Shaw, W. R. Blevin, J. Opt. Soc. Am. 54, 334 (1964).
    [CrossRef]
  17. R. P. Netterfield, Appl. Opt. 15, 1969 (1976).
    [CrossRef] [PubMed]
  18. F. Stetter, R. Esselborn, N. Harder, M. Friz, P. Tolles, Appl. Opt. 15, 2315 (1976).
    [CrossRef] [PubMed]
  19. J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
    [CrossRef]
  20. D. M. Sanders, F. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng.325, (1982), In press.
  21. H. K. Pulker, G. Paesold, E. Ritter, Appl. Opt. 15, 2986 (1976).
    [CrossRef] [PubMed]
  22. T. H. Allen, Proc. Soc. Photo-Opt. Instrum. Eng. 325, 93 (1982).
  23. S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
    [CrossRef]
  24. S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
    [CrossRef]
  25. A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
    [CrossRef]
  26. D. Richmond, PhD Thesis, Newcastle-upon-Tyne Polytechnic (1976).

1982 (3)

J. Ebert, Proc. Soc. Photo-Opt. Instrum. Eng. 325, (1982), In press.

K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
[CrossRef]

T. H. Allen, Proc. Soc. Photo-Opt. Instrum. Eng. 325, 93 (1982).

1981 (1)

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

1980 (2)

S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
[CrossRef]

E. H. Hirsch, I. K. Varga, Thin Solid Films 69, 99 (1980).
[CrossRef]

1979 (1)

J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
[CrossRef]

1978 (1)

S. Gautherin, C.h.r. Weissmantel, Thin Solid Films 50, 135 (1978).
[CrossRef]

1977 (1)

M. Marinov, Thin Solid Films 46, 267 (1977).
[CrossRef]

1976 (5)

1974 (3)

A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
[CrossRef]

R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).

J. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).
[CrossRef]

1973 (1)

S. Aisenberg, R. W. Chabot, J. Vac. Sci. Technol. 10, 104 (1973).
[CrossRef]

1971 (1)

H. K. Pulker, E. Jung, Thin Solid Films 9, 57 (1971).
[CrossRef]

1970 (1)

J. M. Pearson, Thin Solid Films 6, 349 (1970).
[CrossRef]

1969 (1)

B. A. Moochan, A. V. Demshishin, Fiz. Met. Metalloved. 28, 653 (1969).

1964 (1)

Aisenberg, S.

S. Aisenberg, R. W. Chabot, J. Vac. Sci. Technol. 10, 104 (1973).
[CrossRef]

Allen, T. H.

T. H. Allen, Proc. Soc. Photo-Opt. Instrum. Eng. 325, 93 (1982).

Amano, S.

R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).

Barr, T. L.

J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
[CrossRef]

Beister, G.

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
[CrossRef]

Blevin, W. R.

Chabot, R. W.

S. Aisenberg, R. W. Chabot, J. Vac. Sci. Technol. 10, 104 (1973).
[CrossRef]

Chopra, K. L.

K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
[CrossRef]

Demshishin, A. V.

B. A. Moochan, A. V. Demshishin, Fiz. Met. Metalloved. 28, 653 (1969).

Ebert, J.

J. Ebert, Proc. Soc. Photo-Opt. Instrum. Eng. 325, (1982), In press.

Esselborn, R.

Farabaugh, F. N.

D. M. Sanders, F. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng.325, (1982), In press.

Friz, M.

Gautherin, S.

S. Gautherin, C.h.r. Weissmantel, Thin Solid Films 50, 135 (1978).
[CrossRef]

Greene, J. E.

J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
[CrossRef]

Guenther, K. H.

Hacker, E.

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

Haller, W. K.

D. M. Sanders, F. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng.325, (1982), In press.

Harder, N.

Harshavardan, K. S.

K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
[CrossRef]

Hiraga, R.

R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).

Hirsch, E. H.

E. H. Hirsch, I. K. Varga, Thin Solid Films 69, 99 (1980).
[CrossRef]

Jung, E.

H. K. Pulker, E. Jung, Thin Solid Films 9, 57 (1971).
[CrossRef]

Klinger, R. E.

J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
[CrossRef]

Macleod, H. A.

S. Ogura, H. A. Macleod, Thin Solid Films 34, 371 (1976).
[CrossRef]

Malhotra, L. K.

K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
[CrossRef]

Marinov, M.

M. Marinov, Thin Solid Films 46, 267 (1977).
[CrossRef]

Mayer, J. W.

A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
[CrossRef]

Moochan, B. A.

B. A. Moochan, A. V. Demshishin, Fiz. Met. Metalloved. 28, 653 (1969).

Netterfield, R. P.

Ogura, S.

S. Ogura, H. A. Macleod, Thin Solid Films 34, 371 (1976).
[CrossRef]

R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).

S. Ogura, PhD Thesis, Newcastle-upon-Tyne Polytechnic (1975).

Paesold, G.

Pearson, J. M.

J. M. Pearson, Thin Solid Films 6, 349 (1970).
[CrossRef]

Pulker, H. K.

Rajagopalan, S.

K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
[CrossRef]

Richmond, D.

D. Richmond, PhD Thesis, Newcastle-upon-Tyne Polytechnic (1976).

Ritter, E.

Sainty, W. G.

W. G. Sainty, in Proceedings, Third Conference on Science and Technology (ANZAAS, Canberra, 1978).

Sanders, D. M.

D. M. Sanders, F. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng.325, (1982), In press.

Schiller, S.

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
[CrossRef]

Schirmer, G.

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

Schneider, S.

S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
[CrossRef]

Shaw, J. E.

Sieber, W.

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
[CrossRef]

Sigurd, D.

A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
[CrossRef]

Stetter, F.

Sugawara, N.

R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).

Thornton, J. A.

J. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).
[CrossRef]

Tolles, P.

Turos, A.

A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
[CrossRef]

van der Weg, W. F.

A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
[CrossRef]

Varga, I. K.

E. H. Hirsch, I. K. Varga, Thin Solid Films 69, 99 (1980).
[CrossRef]

Weissmantel, C.h.r.

S. Gautherin, C.h.r. Weissmantel, Thin Solid Films 50, 135 (1978).
[CrossRef]

Welsh, L. B.

J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. L. Chopra, K. S. Harshavardan, S. Rajagopalan, L. K. Malhotra, Appl. Phys. Lett. 40, 428 (1982).
[CrossRef]

Chem. Phys. Lett. (1)

J. E. Greene, R. E. Klinger, T. L. Barr, L. B. Welsh, Chem. Phys. Lett. 62, 46 (1979).
[CrossRef]

Fiz. Met. Metalloved. (1)

B. A. Moochan, A. V. Demshishin, Fiz. Met. Metalloved. 28, 653 (1969).

J. Appl. Phys. (1)

A. Turos, W. F. van der Weg, D. Sigurd, J. W. Mayer, J. Appl. Phys. 45, 2777 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. (2)

J. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).
[CrossRef]

S. Aisenberg, R. W. Chabot, J. Vac. Sci. Technol. 10, 104 (1973).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Hiraga, N. Sugawara, S. Ogura, S. Amano, Jpn. J. Appl. Phys. 2, 689 (1974).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. Ebert, Proc. Soc. Photo-Opt. Instrum. Eng. 325, (1982), In press.

T. H. Allen, Proc. Soc. Photo-Opt. Instrum. Eng. 325, 93 (1982).

Thin Solid Films (8)

S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films 72, 475 (1980).
[CrossRef]

S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, Thin Solid Films 83, 239 (1981).
[CrossRef]

H. K. Pulker, E. Jung, Thin Solid Films 9, 57 (1971).
[CrossRef]

S. Ogura, H. A. Macleod, Thin Solid Films 34, 371 (1976).
[CrossRef]

J. M. Pearson, Thin Solid Films 6, 349 (1970).
[CrossRef]

S. Gautherin, C.h.r. Weissmantel, Thin Solid Films 50, 135 (1978).
[CrossRef]

M. Marinov, Thin Solid Films 46, 267 (1977).
[CrossRef]

E. H. Hirsch, I. K. Varga, Thin Solid Films 69, 99 (1980).
[CrossRef]

Other (4)

W. G. Sainty, in Proceedings, Third Conference on Science and Technology (ANZAAS, Canberra, 1978).

S. Ogura, PhD Thesis, Newcastle-upon-Tyne Polytechnic (1975).

D. M. Sanders, F. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng.325, (1982), In press.

D. Richmond, PhD Thesis, Newcastle-upon-Tyne Polytechnic (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of equipment used to deposit and monitor the thin films.

Fig. 2
Fig. 2

Measured spectral transmittance Ts at 19° angle of incidence vs wavelength for ZrO2 films: (a) deposited onto substrate at room temperature (1) in vacuum and (2) after exposure to air; (b) deposited onto substrates at 300°C (1) in vacuum while still hot, (2) in vacuum after cooling, and (3) in air.

Fig. 3
Fig. 3

Transmittance at 550 nm as a function of time of a substrate coated with ZrO2 when the film was bombarded with argon ions. Initially, the transmittance decreases rapidly due to absorption caused by preferential sputtering of oxygen from the outermost monolayers. The transmittance then changes due to normal sputtering and increases after bombardment due to recombination of oxygen in the Zr-rich surface layer.

Fig. 4
Fig. 4

Measured spectral transmittance Ts at 19° angle of incidence vs wavelength for a ZrO2 film produced on a substrate at room temperature by evaporation, bombardment of the growing film with argon ions, and backfilled with oxygen to a pressure of 10−2 Pa: — in vacuum, … after exposure to air.

Fig. 5
Fig. 5

SEM micrographs of ZrO2 films prepared under conditions (a) and (d) in Table I. Top, edge, and surface of ZrO2 no ions, heated to 300°C. Bottom, edge, and surface of ZrO2 were prepared with ion irradiation at room temperature

Fig. 6
Fig. 6

Measured spectral transmittal Ts at 19° angle of incidence vs wavelength for TiO2 films: (a) deposited onto a substrate at room temperature under conditions given in (a) of Table II. (1) in vacuum, (2) after exposure to air, (3) on exposure to saturated air; (b) deposited onto a substrate at 300°C under conditions given in (b) of Table II, - - - in vacuum at 300°C, - · - · - after cooling in vacuum, — after exposure to air.

Fig. 7
Fig. 7

Measured spectral transmittance Ts at 19° angle of incidence vs wavelength for SiO2 film deposited onto a cooled substrate which has been precoated with an ion-beam stabilized layer of ZrO2: (a) with no ion bombardment, — in vacuum, - - - after exposure to air; (b) with argon-ion bombardment, — in vacuum, … after exposure to air, - - - after exposure to a moisture-saturated atmosphere for one day.

Fig. 8
Fig. 8

Measured spectral transmittance of a fifteen-layer (HL)4(LH)4 interference filter, where H = ZrO2 quarterwavelength layers and L = SiO2 quarterwavelength layers at 550 nm. The films were deposited without ion bombardment onto a substrate at room temperature under conditions given in (a) of Table I and Table II; — in vacuum, - - - after exposure to air.

Fig. 9
Fig. 9

Measured spectral transmittance of an eleven-layer (HL)3(LH)3 interference filter, where H = ZrO2 quarterwavelength layers and L = SiO2 quarterwavelength layers. The films were deposited onto substrates at room temperature with ion bombardment of the growing films as described by (d) in Table I and (c) in Table III. The shift in the traces between measurements in vacuum and in air are less than the width of the pen.

Tables (3)

Tables Icon

Table I Deposition Conditions and Optical Properties of ZrO2 Prepared Under Different Conditions

Tables Icon

Table II Deposition Conditions and Optical Properties of TiO2 Prepared Under Different Conditions

Tables Icon

Table III Deposition Conditions and Extinction Coefficient of SiO2 Films Prepared With and Without Ion Bombardment and Deposited Onto Room Temperature Substrate

Metrics