Abstract

Bleached reflection holograms produced by two plane waves in Agfa 8E56 photographic emulsion and recorded in an index-matching liquid tank at 514 nm are studied. Replay at 514 nm is both in the tank and in air, boundary reflections giving rise to multiple-output beams in the latter case. The intensities in the various output beams are measured as a function of the angle of incidence of the input beam. A simple theory based on two-wave grating diffraction and the Fresnel boundary coefficients is formulated and shown to agree with good approximation with the observed intensities of all significant output beams.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Philips, P. G. Gwynn, A. A. Ward, Proc. Soc. Photo-Opt. Instrum. Eng. 212, 10 (1979).
  2. Holography Newsletter No. 1, Agfa-Gevaert, Ltd.
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  4. C. V. Raman, N. S. Nagendra Nath, Proc. Indian Acad. Sci. Sect. A 3, 119 (1936).
  5. R. Magnusson, T. K. Gaylord, J. Opt. Soc. Am. 67, 1165 (1977).
    [CrossRef]
  6. R. S. Chu, J. A. Kong, IEEE Trans. Microwave Theory Tech. MTT-25, 18 (1977).
  7. M. G. Moharam, T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
    [CrossRef]
  8. H. Kogelnik, J. Opt. Soc. Am. 57, 431 (1967).
    [CrossRef]
  9. J. A. Kong, J. Opt. Soc. Am. 67, 825 (1977).
    [CrossRef]
  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  11. In fact, Kogelnik’s theory is slightly modified in the sense that the assumed wave vector of the diffracted beam is as shown in Fig. 4 and not the wave vector obtained by K-vector closure. The difference between the two methods appears only in the sidelobes.

1981

1979

N. J. Philips, P. G. Gwynn, A. A. Ward, Proc. Soc. Photo-Opt. Instrum. Eng. 212, 10 (1979).

1977

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

1967

1936

C. V. Raman, N. S. Nagendra Nath, Proc. Indian Acad. Sci. Sect. A 3, 119 (1936).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Chu, R. S.

R. S. Chu, J. A. Kong, IEEE Trans. Microwave Theory Tech. MTT-25, 18 (1977).

Gaylord, T. K.

Gwynn, P. G.

N. J. Philips, P. G. Gwynn, A. A. Ward, Proc. Soc. Photo-Opt. Instrum. Eng. 212, 10 (1979).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

H. Kogelnik, J. Opt. Soc. Am. 57, 431 (1967).
[CrossRef]

Kong, J. A.

J. A. Kong, J. Opt. Soc. Am. 67, 825 (1977).
[CrossRef]

R. S. Chu, J. A. Kong, IEEE Trans. Microwave Theory Tech. MTT-25, 18 (1977).

Magnusson, R.

Moharam, M. G.

Nagendra Nath, N. S.

C. V. Raman, N. S. Nagendra Nath, Proc. Indian Acad. Sci. Sect. A 3, 119 (1936).

Philips, N. J.

N. J. Philips, P. G. Gwynn, A. A. Ward, Proc. Soc. Photo-Opt. Instrum. Eng. 212, 10 (1979).

Raman, C. V.

C. V. Raman, N. S. Nagendra Nath, Proc. Indian Acad. Sci. Sect. A 3, 119 (1936).

Ward, A. A.

N. J. Philips, P. G. Gwynn, A. A. Ward, Proc. Soc. Photo-Opt. Instrum. Eng. 212, 10 (1979).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Trans. Microwave Theory Tech.

R. S. Chu, J. A. Kong, IEEE Trans. Microwave Theory Tech. MTT-25, 18 (1977).

J. Opt. Soc. Am.

Proc. Indian Acad. Sci. Sect. A

C. V. Raman, N. S. Nagendra Nath, Proc. Indian Acad. Sci. Sect. A 3, 119 (1936).

Proc. Soc. Photo-Opt. Instrum. Eng.

N. J. Philips, P. G. Gwynn, A. A. Ward, Proc. Soc. Photo-Opt. Instrum. Eng. 212, 10 (1979).

Other

Holography Newsletter No. 1, Agfa-Gevaert, Ltd.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

In fact, Kogelnik’s theory is slightly modified in the sense that the assumed wave vector of the diffracted beam is as shown in Fig. 4 and not the wave vector obtained by K-vector closure. The difference between the two methods appears only in the sidelobes.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the hologram recording geometry in the index-matching liquid tank.

Fig. 2
Fig. 2

Replay geometry for measurements in air or in the index-matching liquid tank.

Fig. 3
Fig. 3

Vector diagram showing the construction of the grating vector from the recording wave vectors in the emulsion.

Fig. 4
Fig. 4

Vector diagram showing the construction of the assumed propagation vector in the emulsion, σ ¯ 1, of the Bragg diffracted beam.

Fig. 5
Fig. 5

Replay in the liquid tank: experimental and calculated results of intensity vs incident angle for the transmitted and Bragg reflected output beams, T0 and R−1.

Fig. 6
Fig. 6

Schematic diagram showing the sources of the various output beams generated at replay in air.

Fig. 7
Fig. 7

Replay in air: experimental and calculated results of intensity vs incident angle for the various output beams: (a) R0, R−1, and R−2; (b) T0 and T−1; and (c) T1.

Fig. 8
Fig. 8

Vector diagram showing, as an example, the construction of the assumed propagation vector in the emulsion ρ ¯ 1 of the output beam T1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n l sin θ = n s sin θ ; i ˆ y · ( ρ ¯ 0 ρ ¯ 0 ) = 0 ; | ρ ¯ 0 | = n l n s | ρ ¯ 0 | .
η = power in diffracted beam sum of power in the diffracted and transmitted beams ,
r = r 0 + r 1 cos K ¯ · r ¯ .
η = cos γ cos θ | t h a V r h a U t a h | 2 ,

Metrics