Abstract

Laser-induced damage of λ/4 ThF4/ZnS coatings for 10.6 μm is studied. Extended areas of the coated surfaces are recorded on high resolution film both before and after irradiation using Twyman-Green and knife-edge techniques, the latter method proving to be superior and quite useful. Comparisons are made to establish a possible correlation between the location of damage sites and previous defects. The morphology of the damage is also studied using Nomarski microscopy to determine possible causes of damage. Damage on coated silicon substrates resembles melts and burns with cracking and/or annealing around some burned areas, while damage to the coated silica substrates resembles bubbles that are arranged along scratches or in clusters. The high correlation between damage sites and previous defects suggests that clean defect-free coatings have greatly increased damage thresholds.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Bennett, A. J. Glass, A. H. Guenther, B. Newnam, Appl. Opt. 20, 3003 (1981).
    [Crossref] [PubMed]
  2. T. A. Wiggins, Appl. Opt. 20, 1020 (1981).
    [Crossref] [PubMed]
  3. A. M. Ledger, Appl. Opt. 18, 2979 (1979).
    [Crossref] [PubMed]
  4. R. M. Herman, C. L. Chin, E. Young, Appl. Opt. 17, 520 (1978).
    [Crossref] [PubMed]
  5. T. W. Humpherys, R. L. Lusk, K. C. Jungling, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 568 (1979), p. 257.
  6. S. R. Foltyn, B. E. Newnam, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 265.
  7. M. J. Soileau, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 300.

1981 (2)

1979 (1)

1978 (1)

Bennett, H. E.

Chin, C. L.

Foltyn, S. R.

S. R. Foltyn, B. E. Newnam, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 265.

Glass, A. J.

Guenther, A. H.

Herman, R. M.

Humpherys, T. W.

T. W. Humpherys, R. L. Lusk, K. C. Jungling, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 568 (1979), p. 257.

Jungling, K. C.

T. W. Humpherys, R. L. Lusk, K. C. Jungling, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 568 (1979), p. 257.

Ledger, A. M.

Lusk, R. L.

T. W. Humpherys, R. L. Lusk, K. C. Jungling, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 568 (1979), p. 257.

Newnam, B.

Newnam, B. E.

S. R. Foltyn, B. E. Newnam, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 265.

Soileau, M. J.

M. J. Soileau, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 300.

Wiggins, T. A.

Young, E.

Appl. Opt. (4)

Other (3)

T. W. Humpherys, R. L. Lusk, K. C. Jungling, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 568 (1979), p. 257.

S. R. Foltyn, B. E. Newnam, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 265.

M. J. Soileau, in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Eds., Natl. Bur. Stand. U.S. Spec. Publ. 620 (1980), p. 300.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Damage observed on (A) coated silicon substrate and (B) coated silica substrate. The length of the line by each figure indicates a distance of 100 μm on the samples.

Fig. 2
Fig. 2

Damage observed on coated silica substrates. The length of the line by each figure indicates a distance of 50 μm on the samples.

Fig. 3
Fig. 3

Damage observed on coated silicon substrates. The length of the line by each figure indicates a distance of 100 μm on the samples.

Fig. 4
Fig. 4

Damage observed on coated silicon substrates. The length of the line by each figure indicates a distance of 50 μm on the samples.

Fig. 5
Fig. 5

Reproduction of portions of the holographic film records of the same area of a coated silicon sample showing defect sites which were and were not damaged by a single irradiation (A) before and (B) after irradiation. The length of the line indicates a distance of 200 μm on the sample.

Tables (2)

Tables Icon

Table I Intensity Levels, Number of Exposures, and Number of Features Observed If Major Damage did not Occur

Tables Icon

Table II Frequency with Which Salient Features were Observed with Reference to a Photograph of Their Typical Appearance

Metrics