Abstract

A dynamic IR high temperature target is activated by scanning a high power laser beam on its surface. The laser dwell time determines the amount of power deposited at a particular location. Temperature distribution is calculated resulting from the laser deposited power as a function of position and time. The power necessary to heat the target and maintain the target temperature distribution is evaluated. The effects of heat saturation in time and place are examined for a general irradiation study in the case of a target with finite dimensions and the laser beam diameter of a size comparable to target thickness and width.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Scholl, W. L. Wolfe, Appl. Opt. 20, 2143 (1981).
    [CrossRef] [PubMed]
  2. Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
    [CrossRef]
  3. P. Miles, J. Gallagher, R. Gentilman, in Laser Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, Eds., Natl. Bur. Stand. U. S. Spec. Publ. 568 (U. S. GPO, Washington, D.C., 1979).
  4. H. Kuster, J. Ebert, in Laser Induced Damage in Optical Materials (Ref. 3).
  5. C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).
  6. M. S. Scholl, Appl. Opt. 21, 660 (1982).
    [CrossRef] [PubMed]
  7. M. S. Scholl, Appl. Opt. 21, 1839 (1982).
    [CrossRef] [PubMed]
  8. P. M. Moise, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  9. P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).
  10. E. U. Condon, H. Odishaw, Eds., Handbook of Physics (McGraw-Hill, New York, 1967).

1982

1981

1980

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
[CrossRef]

Allen, T. H.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Apfel, J. H.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Carniglia, C. K.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Corson, D. R.

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

Ebert, J.

H. Kuster, J. Ebert, in Laser Induced Damage in Optical Materials (Ref. 3).

Feshback, H.

P. M. Moise, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

Gallagher, J.

P. Miles, J. Gallagher, R. Gentilman, in Laser Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, Eds., Natl. Bur. Stand. U. S. Spec. Publ. 568 (U. S. GPO, Washington, D.C., 1979).

Gentilman, R.

P. Miles, J. Gallagher, R. Gentilman, in Laser Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, Eds., Natl. Bur. Stand. U. S. Spec. Publ. 568 (U. S. GPO, Washington, D.C., 1979).

Gibbons, J. F.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
[CrossRef]

Gold, R. B.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
[CrossRef]

Kuster, H.

H. Kuster, J. Ebert, in Laser Induced Damage in Optical Materials (Ref. 3).

Lietoila, A.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
[CrossRef]

Lorrain, P.

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

Lowdermilk, W. H.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Milam, D.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Miles, P.

P. Miles, J. Gallagher, R. Gentilman, in Laser Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, Eds., Natl. Bur. Stand. U. S. Spec. Publ. 568 (U. S. GPO, Washington, D.C., 1979).

Moise, P. M.

P. M. Moise, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

Nissim, Y. I.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
[CrossRef]

Rainer, R.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Scholl, M. S.

Tuttle, T. A.

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

Wolfe, W. L.

Appl. Opt.

J. Appl. Phys.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular cw Laser Beam,” J. Appl. Phys. (Jan.1980).
[CrossRef]

Other

P. Miles, J. Gallagher, R. Gentilman, in Laser Induced Damage in Optical Materials, H. E. Bennett, A. J. Glass, A. H. Guenther, Eds., Natl. Bur. Stand. U. S. Spec. Publ. 568 (U. S. GPO, Washington, D.C., 1979).

H. Kuster, J. Ebert, in Laser Induced Damage in Optical Materials (Ref. 3).

C. K. Carniglia, J. H. Apfel, T. H. Allen, T. A. Tuttle, W. H. Lowdermilk, D. Milam, R. Rainer, in Laser Induced Damage in Optical Materials (Ref. 3).

P. M. Moise, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

E. U. Condon, H. Odishaw, Eds., Handbook of Physics (McGraw-Hill, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Scanning setup for the dwell time modulation.

Fig. 2
Fig. 2

Power density as a function of position on the hot spot at t = 2 sec for variable size hot spots.

Fig. 3
Fig. 3

Power density as a function of position on the hot spot at t = 10 sec for variable size hot spots.

Fig. 4
Fig. 4

Power density as a function of time for a 1-mm hot spot.

Fig. 5
Fig. 5

Power density as a function of time for a 3-mm hot spot.

Fig. 6
Fig. 6

Power density as a function of time for a 7-mm hot spot.

Fig. 7
Fig. 7

Power density as a function of time for a 11-mm diameter hot spot.

Fig. 8
Fig. 8

Power density as a function of time for a 15-mm hot spot.

Fig. 9
Fig. 9

Power density on the hot spot needed to heat it at 110 K/sec as a function of spot diameter.

Fig. 10
Fig. 10

Target temperature as a function of distance from the edge of the hot spot at t = 2 sec.

Fig. 11
Fig. 11

Target temperature as a function of distance from the edge of the hot spot at t = 10 sec.

Fig. 12
Fig. 12

Temperature of the central element on the hot spot as a function of time for 110 K/sec heating rate.

Fig. 13
Fig. 13

Temperature of the 3-mm hot spot as a function of time irradiated with 1 W/mm2 for two target widths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c d T ( x , y , z , t ) t = k T ( x , y , z , t ) ] p ( x , y , z , t ) ,
p ( S , t ) h = σ [ T ( S , t ) 4 T B 4 ] T ( x , y , z , 0 ) = T 0 ,

Metrics