Abstract

A technique is described for combining several wavelength backscatter measurements to yield profiles of molecular density and temperature plus aerosol and cloud backscatter with associated error-bar profiles. Error sources include signal, transmission, calibration, conventional density, lidar density normalization, temperature or pressure estimation at a reference height, and backscatter wavelength-dependence estimation. Strong particulate contamination limits the technique to the cloud-free upper troposphere and above. Error bars automatically returned as part of the measurement show when such contamination occurs. Relative density (temperature) profiles have rms errors of 0.5–2% (1.2–2.5 K) in the nonvolcanic stratosphere and upper troposphere. The density profiles significantly improve aerosol retrievals. The fine vertical resolution of the temperature profiles would permit defining the tropopause to ∼0.5 km and higher wave structures to 1 or 2 km.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982).
    [CrossRef] [PubMed]
  2. G. S. Kent, W. Keenliside, J. Atmos. Sci. 31, 1409 (1974).
    [CrossRef]
  3. A. Hauchecorne, M.-L. Chanin, Geophys. Res. Lett. 7, 565 (1980).
    [CrossRef]
  4. W. H. Fuller, T. J. Swissler, M. P. McCormick, “Comparative Analysis of Red-Blue Lidar and Rawinsonde Data,” in Atmospheric Aerosols: Their Optical Properties and Effects, NASA CP-2004 (U.S. GPO, Washington, D.C., 1976), paper TuC2-1-4.
  5. J. J. DeLuisi, B. G. Schuster, R. K. Sato, Appl. Opt. 14, 1917 (1975).
    [CrossRef] [PubMed]
  6. P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
    [PubMed]
  7. R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1977).
  8. C. Froehlich, G. E. Shaw, Appl. Opt. 19, 1773 (1980).
    [CrossRef]
  9. A. T. Young, Appl. Opt. 19, 3427 (1980).
    [CrossRef] [PubMed]
  10. U.S. Standard Atmosphere Supplements (U.S. GPO, Washington, D.C., 1966).
  11. R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), Chap. 4.
  12. R. G. Pinnick, J. M. Rosen, D. J. Hofmann, J. Atmos. Sci. 33, 304 (1976).
    [CrossRef]
  13. R. J. List, Smithsonian Meteorological Tables (Smithsonian Institution Press, Washington, D.C., 1949), p. 295.
  14. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 336.
  15. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.
  16. G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).
  17. S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” NASA Contract. Rep. 146134 (1975).
  18. C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979), abstract only.

1982 (1)

1980 (3)

1979 (2)

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979), abstract only.

1976 (1)

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, J. Atmos. Sci. 33, 304 (1976).
[CrossRef]

1975 (1)

1974 (1)

G. S. Kent, W. Keenliside, J. Atmos. Sci. 31, 1409 (1974).
[CrossRef]

1971 (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Benedetti-Michelangeli, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 336.

Chanin, M.-L.

A. Hauchecorne, M.-L. Chanin, Geophys. Res. Lett. 7, 565 (1980).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), Chap. 4.

DeLuisi, J. J.

Fiocco, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Froehlich, C.

Fuller, W. H.

W. H. Fuller, T. J. Swissler, M. P. McCormick, “Comparative Analysis of Red-Blue Lidar and Rawinsonde Data,” in Atmospheric Aerosols: Their Optical Properties and Effects, NASA CP-2004 (U.S. GPO, Washington, D.C., 1976), paper TuC2-1-4.

Grams, G. W.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.

Greco, R. V.

R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1977).

Hauchecorne, A.

A. Hauchecorne, M.-L. Chanin, Geophys. Res. Lett. 7, 565 (1980).
[CrossRef]

Hofmann, D. J.

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, J. Atmos. Sci. 33, 304 (1976).
[CrossRef]

Kalshoven, J. E.

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979), abstract only.

Keenliside, W.

G. S. Kent, W. Keenliside, J. Atmos. Sci. 31, 1409 (1974).
[CrossRef]

Kent, G. S.

G. S. Kent, W. Keenliside, J. Atmos. Sci. 31, 1409 (1974).
[CrossRef]

Korb, C. L.

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979), abstract only.

List, R. J.

R. J. List, Smithsonian Meteorological Tables (Smithsonian Institution Press, Washington, D.C., 1949), p. 295.

Livingston, J. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.

Madonna, E.

G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Maichsberger, K.

G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

McCormick, M. P.

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

W. H. Fuller, T. J. Swissler, M. P. McCormick, “Comparative Analysis of Red-Blue Lidar and Rawinsonde Data,” in Atmospheric Aerosols: Their Optical Properties and Effects, NASA CP-2004 (U.S. GPO, Washington, D.C., 1976), paper TuC2-1-4.

Morley, B. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.

Patterson, E. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.

Pinnick, R. G.

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, J. Atmos. Sci. 33, 304 (1976).
[CrossRef]

Rosen, J. M.

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, J. Atmos. Sci. 33, 304 (1976).
[CrossRef]

Russell, P. B.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), Chap. 4.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.

Sato, R. K.

Schuster, B. G.

Shaw, G. E.

Shipley, S. T.

S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” NASA Contract. Rep. 146134 (1975).

Swissler, T. J.

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

W. H. Fuller, T. J. Swissler, M. P. McCormick, “Comparative Analysis of Red-Blue Lidar and Rawinsonde Data,” in Atmospheric Aerosols: Their Optical Properties and Effects, NASA CP-2004 (U.S. GPO, Washington, D.C., 1976), paper TuC2-1-4.

Weng, C. Y.

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979), abstract only.

Young, A. T.

Appl. Opt. (5)

Geophys. Res. Lett. (1)

A. Hauchecorne, M.-L. Chanin, Geophys. Res. Lett. 7, 565 (1980).
[CrossRef]

J. Atmos. Sci. (2)

G. S. Kent, W. Keenliside, J. Atmos. Sci. 31, 1409 (1974).
[CrossRef]

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, J. Atmos. Sci. 33, 304 (1976).
[CrossRef]

Nature London Phys. Sci. (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maichsberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Trans. Am. Geophys. Union (1)

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979), abstract only.

Other (8)

S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” NASA Contract. Rep. 146134 (1975).

R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1977).

R. J. List, Smithsonian Meteorological Tables (Smithsonian Institution Press, Washington, D.C., 1949), p. 295.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 336.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.

W. H. Fuller, T. J. Swissler, M. P. McCormick, “Comparative Analysis of Red-Blue Lidar and Rawinsonde Data,” in Atmospheric Aerosols: Their Optical Properties and Effects, NASA CP-2004 (U.S. GPO, Washington, D.C., 1976), paper TuC2-1-4.

U.S. Standard Atmosphere Supplements (U.S. GPO, Washington, D.C., 1966).

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multiwavelength analysis procedure to retrieve profiles of scattering ratio and molecular density. Numbers indicate steps described in the text.

Fig. 2
Fig. 2

Low-latitude nighttime simulation results, 0.355 μm: (a) backscatter mixing ratio profile inferred from 1.064-μm profile in Fig. 5(a) of Ref. 1; (b) signal and background profiles; (c) density profile retrieved from (a) and (b) expressed as ratio to model; and (d) temperature profile derived from (c) compared with model.

Fig. 3
Fig. 3

Low-latitude nighttime simulation results, 1.064 and 0.532 μm, using lidar density data above 7 km and conventional density below: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Fig. 4
Fig. 4

Mid-latitude nighttime simulation results, 0.355 μm: (a) backscatter mixing ratio profile inferred from 1.064-μm profile in Fig. 7(a) of Ref. 1; (b) signal and background profiles; (c) density profile inferred from (a) and (b) expressed as ratio to model; (d) temperature profile derived from (c) compared with model.

Fig. 5
Fig. 5

High-latitude nighttime simulation results, 0.355 μm: (a) backscatter mixing ratio profile inferred from 1.064-μm profile in Fig. 9(a) of Ref. 1; (b) signal and background profiles; (c) density profile inferred from (a) and (b) expressed as ratio to model; (d) temperature profile derived from (c) compared with model.

Fig. 6
Fig. 6

High-latitude nighttime simulation results, 1.064 and 0.532 μm, using lidar density data above 5 km, conventional density below: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

R ( λ 3 , z ) = 1 + [ R ( λ 1 , z ) 1 ] Ψ ( λ 3 , λ 1 , z ) λ 1 ( λ 1 ) λ 3 ( λ 3 ) ,
D ( z ) ( z z L ) 2 S ( λ 3 , z ) Q 2 ( λ 3 , z , z L ) R ( λ 3 , z ) ,
ρ L ( z ) = ρ ( ) D ( z ) D ( ) .
B g ( 0.355 μ m ) / B g ( 1.064 μ m ) 81 ,
0 < α < 2 ,
B p ( 0.355 μ m ) / B p ( 1.064 μ m ) 1 9 .
B p ( 0.355 μ m ) B g ( 0.355 μ m ) ( 0.012 0.11 ) × B p ( 1.064 μ m ) B g ( 1.064 μ m ) .
d P ( z ) = g ( z ) ρ ( z ) d z ,
T ( z ) T υ ( z ) = P ( z ) C g ρ ( z ) .
| T T υ | < 1 K ,
Δ z i , i ± 1 z i z i ± 1 ,
Δ P i , i ± 1 = z i z i ± 1 g ( z ) ρ ( z i ) exp [ ( z z i ) / H i , i ± 1 ] d z
= ( z i , z i ± 1 ) H i , i ± 1 [ ρ ( z i ± 1 ) ρ ( z i ) ] ,
H i , i ± 1 ( z i ± 1 z i ) / ln [ ρ ( z i ) / ρ ( z i ± 1 ) ] .
Δ P i , i ± 1 = ( z i , z i ± 1 ) ρ ¯ ( z i , z i ± 1 ) Δ z i , i ± 1 ,
ρ ¯ ( z i , z i ± 1 ) ρ ( z i ± 1 ) ρ ( z i ) ln [ ρ ( z i ) / ρ ( z 1 ± 1 ) ] .
ρ ¯ ( z i , z 1 ± 1 ) = 0.5 [ ρ ( z i ) + ρ ( z i ± 1 ) ]
P ( z I ) = P + Δ P I ,
Δ P I ( z I , z ) ρ ¯ ( z I , z ) Δ z I ,
Δ z I z I z ,
P ( z i ) = P ( z I ) + j = I + 1 i Δ P j , j 1
P ( z i ) = P ( z I ) + j = I 1 i Δ P j , j + 1
P ( z i ) = P + k ρ ( z , z I ) + j = I + 1 i k j , j 1 ρ ¯ ( z j , z j 1 ) ,
k ( z I , z ) Δ z I ,
k j , j ± 1 ( z j , z j ± 1 ) Δ z j , j ± 1 .
T ( z i ) = P C g ρ ( z i ) + k C g ρ ¯ ( z , z I ) ρ ( z i ) + j = I + 1 i k j , j 1 C g ρ ¯ ( z j , z j 1 ) ρ ( z i ) .
T ( z i ) = T ρ ρ ( z i ) + k C g ρ ( z , z I ) ρ ( z i ) + j = I + 1 i k j , j 1 C g ρ ( z j , z j 1 ) ρ ( z i ) ,
( δ R 3 R 3 ) 2 = ( R 3 1 R 3 ) 2 [ ( δ R 1 R 1 1 ) 2 + ( δ ψ 3 , 1 ψ 3 , 1 ) 2 ] ,
R n R ( λ n , z ) ,
ψ m , n ψ ( λ m , λ n , z ) .
( δ ρ L ρ L ) 2 = ( δ ρ ̂ ρ ̂ ) 2 + [ δ ( D / D ̂ ) D / D ̂ ] 2 ,
[ δ ( D / D ̂ ) D / D ̂ ] 2 = ( δ S 3 S 3 ) 2 + ( δ S ̂ 3 S ̂ 3 ) 2 + [ δ Q 2 ( λ 3 , z , ) Q 2 ( λ 3 , z , ) ] 2 + ( δ R 3 R 3 ) 2 + ( δ R ̂ 3 R ̂ 3 ) 2 ,
ρ ̂ = ρ ( ) ,
S m = S ( λ m , z ) , S ̂ m = S ( λ m , ) ,
R ̂ m = R ( λ m , ) .
Q 2 ( λ , , z L ) / Q 2 ( λ , z , z L ) = Q 2 ( λ , , z ) = exp [ 2 z E ( λ , z ) d z ] ;
T i = T ( D D i ) 2 + 1 2 C g { 1 D i [ k ( D + D I ) + j = I + 1 i 1 k j , j 1 ( D j 1 + D j ) + k i , i 1 D i 1 ] + k i , i 1 } ,
D j D ( z j ) Q 2 ( λ 3 , z i , z L ) = ( z j z L ) 2 S ( λ 3 , z j ) Q 2 ( λ 3 , z j , z i ) R ( λ 3 , z j ) .
P C g D i D ̂ ρ ̂ .
( δ T i ) 2 = ( 1 ρ i ) 2 ( X + Y + Z ) ,
Y ( 1 2 C g ) 2 [ ( δ D I D I ) 2 ρ I 2 ( k + k I + 1 , I ) 2 + j = I + 1 i 1 ( δ D j D j ) 2 ρ j 2 ( k j , j 1 + k j + 1 , j ) 2 ] ,
Z = ( 1 C g ) 2 ( δ D i D i ) 2 ( P i 0.5 ρ i k i , i 1 ) 2 .
X ρ 2 [ ( δ T ) 2 + ( δ D D ) 2 ( T + k 2 C g ) 2 ] ;
X ( 1 C g ) 2 { ( δ P ) 2 + P 2 [ ( δ Q i 2 Q i 2 ) 2 + ( δ D ̂ D ̂ ) + ( δ ρ ̂ ρ ̂ ) 2 ] + ρ 2 k 2 ( δ D D ) 2 } .
ψ ( λ 3 , λ 1 , z ) B p ( λ 3 , z ) B p ( λ 1 , z ) = ( λ 3 λ 1 ) 1 ,
δ ψ ψ = 100 % ,
( δ ρ ̂ ρ ̂ ) = 2 % , = 8 km

Metrics