Abstract

Aerosol and cloud measurements are simulated for a space shuttle lidar. Expected errors (in signal, transmission, density, and calibration) are calculated algebraically and checked by simulating measurements and retrievals using random number generators. Vertical resolution is 0.1–0.5 km in the troposphere, 0.5–2.0 km above, except 0.25–1.0 km in mesospheric cloud and aerosol layers. Horizontal resolution is 100–2000 km. By day vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 μm) as well as strong volcanic stratospheric aerosols (at 0.53 μm). Quantitative backscatter is retrieved provided that particulate optical depth does not exceed ∼0.3. By night all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 μm), mesospheric aerosols (at 0.53 μm), and noctilucent clouds (at 1.06 and 0.53 μm). Molecular density is a leading source of error in measuring nonvolcanic stratospheric and upper tropospheric aerosols.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Evans, “Remote Probing of High Cloud Cover via Satellite-Borne Lidar,” NASA Contract. Rep. 96893 (1968).
  2. S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” Dept. of Meteorology, U. of Wisc., Madison 53706 (April1975),NASA Contract. Rep. 146134 (1975).
  3. R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
    [CrossRef]
  4. R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1979).The eye safety guidelines in this report assume the ANSI criteria for maximum permissible ocular exposure viewed with the naked eye by day and a 10-in. telescope by night and with multiplicative safety factors of 10, 3, and 2 for scintillation hot spots, multimode laser beam inhomogeneities, and Gaussian beam shape, respectively. The first safety factor should be used in conjunction with either the second or third but not both.
  5. “Shuttle Atmospheric Lidar Research Program,” Final Report of the Atmospheric Lidar Working Group, NASA Spec. Publ. 433 (NTIS, Springfield, Va., 1979).
  6. P. B. Russell, B. M. Morley, Appl. Opt. 21, 1554 (1982).
    [CrossRef] [PubMed]
  7. P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
    [PubMed]
  8. G. Fiocco, G. W. Grams, J. Geophys. Res. 74, 2453 (1969).
    [CrossRef]
  9. G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967).
    [CrossRef]
  10. B. R. Clemesha, Y. Nakamura, Nature 237, 328 (1972).
    [CrossRef]
  11. B. R. Clemesha, D. M. Simonich, J. Geophys. Res. 83, 2403 (1978).
    [CrossRef]
  12. D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971).
    [CrossRef]
  13. R. W. Fegley, H. T. Ellis, Appl. Opt. 14, 1751 (1975).
    [CrossRef] [PubMed]
  14. T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).
  15. F. G. Fernald, B. G. Schuster, J. Geophys. Res. 82, 433 (1977).
    [CrossRef]
  16. M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
    [CrossRef]
  17. R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
    [CrossRef]
  18. P. B. Russell, R. D. Hake, J. Atmos. Sci. 34, 163 (1977).
    [CrossRef]
  19. D. J. Gambling, K. Bartusek, Atmos. Environ. 6, 181 (1972).
    [CrossRef]
  20. P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).
  21. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).
  22. M. P. Thekaekera, Appl. Opt. 13, 518 (1974).
    [CrossRef]
  23. W. E. Evans, “Design of an Airborne Lidar for Stratospheric Aerosol Measurements,” Final Report 5557, NASA contract NAS1-14520, SRI International, Menlo Park, Calif.,NASA Contract. Rep. 145179 (1977).
  24. J. Laver, “Approach for Estimating Errors in Density Profiles,” Appendix D of SAGE Ground Truth Plan, NASA Tech. Memo. 80076 (1979).
  25. A. T. Young, Appl. Opt. 19, 3427 (1980).
    [CrossRef] [PubMed]
  26. J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979).
    [CrossRef]
  27. R. D. Hudson, “Chlorofluoromethanes and the Stratosphere,” NASA Republ. 1010, (1977), p. 31.[Original reference: A. M. Bass, A. L. Ledford, A. H. Laufer, J. Res. Natl. Bur. Stand. Sect. A 80, 143 (1976).]
    [CrossRef]
  28. W. E. Evans, “Evaluation of a Near-Infrared Photomultiplier for Airborne Lidar Applications,” Final Report 6919, NASA contract NAS1-14520, SRI International, Menlo Park, Calif. (1978)NASA Contract. Rep. 145380 (1978).
  29. G. Fiocco, G. W. Grams, Tellus 18, 34 (1966).
    [CrossRef]
  30. G. Fiocco, G. W. Grams

1982 (1)

1980 (2)

A. T. Young, Appl. Opt. 19, 3427 (1980).
[CrossRef] [PubMed]

R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
[CrossRef]

1979 (3)

P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).

J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979).
[CrossRef]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

1978 (3)

R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
[CrossRef]

B. R. Clemesha, D. M. Simonich, J. Geophys. Res. 83, 2403 (1978).
[CrossRef]

M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
[CrossRef]

1977 (3)

P. B. Russell, R. D. Hake, J. Atmos. Sci. 34, 163 (1977).
[CrossRef]

T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).

F. G. Fernald, B. G. Schuster, J. Geophys. Res. 82, 433 (1977).
[CrossRef]

1975 (1)

1974 (1)

1972 (2)

D. J. Gambling, K. Bartusek, Atmos. Environ. 6, 181 (1972).
[CrossRef]

B. R. Clemesha, Y. Nakamura, Nature 237, 328 (1972).
[CrossRef]

1971 (1)

D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971).
[CrossRef]

1969 (1)

G. Fiocco, G. W. Grams, J. Geophys. Res. 74, 2453 (1969).
[CrossRef]

1967 (1)

G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967).
[CrossRef]

1966 (1)

G. Fiocco, G. W. Grams, Tellus 18, 34 (1966).
[CrossRef]

Bartusek, K.

D. J. Gambling, K. Bartusek, Atmos. Environ. 6, 181 (1972).
[CrossRef]

D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971).
[CrossRef]

Bowhill, S. A.

R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
[CrossRef]

Carnuth, W.

R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
[CrossRef]

Chu, W. P.

M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
[CrossRef]

Clemesha, B. R.

B. R. Clemesha, D. M. Simonich, J. Geophys. Res. 83, 2403 (1978).
[CrossRef]

B. R. Clemesha, Y. Nakamura, Nature 237, 328 (1972).
[CrossRef]

G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
[CrossRef]

Elford, W. G.

D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971).
[CrossRef]

Ellis, H. T.

Evans, W. E.

W. E. Evans, “Remote Probing of High Cloud Cover via Satellite-Borne Lidar,” NASA Contract. Rep. 96893 (1968).

W. E. Evans, “Evaluation of a Near-Infrared Photomultiplier for Airborne Lidar Applications,” Final Report 6919, NASA contract NAS1-14520, SRI International, Menlo Park, Calif. (1978)NASA Contract. Rep. 145380 (1978).

W. E. Evans, “Design of an Airborne Lidar for Stratospheric Aerosol Measurements,” Final Report 5557, NASA contract NAS1-14520, SRI International, Menlo Park, Calif.,NASA Contract. Rep. 145179 (1977).

Fegley, R. W.

Fernald, F. G.

F. G. Fernald, B. G. Schuster, J. Geophys. Res. 82, 433 (1977).
[CrossRef]

Fiocco, G.

G. Fiocco, G. W. Grams, J. Geophys. Res. 74, 2453 (1969).
[CrossRef]

G. Fiocco, G. W. Grams, Tellus 18, 34 (1966).
[CrossRef]

G. Fiocco, G. W. Grams

Fujiwara, M.

T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).

Fuller, W. H.

M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
[CrossRef]

Funk, W.

R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
[CrossRef]

Gambling, D. J.

D. J. Gambling, K. Bartusek, Atmos. Environ. 6, 181 (1972).
[CrossRef]

D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971).
[CrossRef]

Grams, G. W.

G. Fiocco, G. W. Grams, J. Geophys. Res. 74, 2453 (1969).
[CrossRef]

G. Fiocco, G. W. Grams, Tellus 18, 34 (1966).
[CrossRef]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).

G. Fiocco, G. W. Grams

Greco, R. V.

R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1979).The eye safety guidelines in this report assume the ANSI criteria for maximum permissible ocular exposure viewed with the naked eye by day and a 10-in. telescope by night and with multiplicative safety factors of 10, 3, and 2 for scintillation hot spots, multimode laser beam inhomogeneities, and Gaussian beam shape, respectively. The first safety factor should be used in conjunction with either the second or third but not both.

Hake, R. D.

R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
[CrossRef]

P. B. Russell, R. D. Hake, J. Atmos. Sci. 34, 163 (1977).
[CrossRef]

Hirono, M.

T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).

Hudson, R. D.

R. D. Hudson, “Chlorofluoromethanes and the Stratosphere,” NASA Republ. 1010, (1977), p. 31.[Original reference: A. M. Bass, A. L. Ledford, A. H. Laufer, J. Res. Natl. Bur. Stand. Sect. A 80, 143 (1976).]
[CrossRef]

Hyde, R. S.

J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979).
[CrossRef]

Itabe, T.

T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).

Jager, H.

R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
[CrossRef]

Kent, G. S.

G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967).
[CrossRef]

Laver, J.

J. Laver, “Approach for Estimating Errors in Density Profiles,” Appendix D of SAGE Ground Truth Plan, NASA Tech. Memo. 80076 (1979).

Livingston, J. M.

P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).

McCormick, M. P.

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
[CrossRef]

Morley, B. M.

P. B. Russell, B. M. Morley, Appl. Opt. 21, 1554 (1982).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).

Nakamura, Y.

B. R. Clemesha, Y. Nakamura, Nature 237, 328 (1972).
[CrossRef]

Nixon, J. F.

J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979).
[CrossRef]

Patterson, E. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).

Reiter, R.

R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
[CrossRef]

Russell, P. B.

P. B. Russell, B. M. Morley, Appl. Opt. 21, 1554 (1982).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).

R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
[CrossRef]

P. B. Russell, R. D. Hake, J. Atmos. Sci. 34, 163 (1977).
[CrossRef]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).

Schuster, B. G.

F. G. Fernald, B. G. Schuster, J. Geophys. Res. 82, 433 (1977).
[CrossRef]

Shipley, S. T.

S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” Dept. of Meteorology, U. of Wisc., Madison 53706 (April1975),NASA Contract. Rep. 146134 (1975).

Simonich, D. M.

B. R. Clemesha, D. M. Simonich, J. Geophys. Res. 83, 2403 (1978).
[CrossRef]

Swissler, T. J.

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
[CrossRef]

Thekaekera, M. P.

Uthe, E. E.

P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).

Whipple, E. C.

J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979).
[CrossRef]

Wright, R. W.

G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967).
[CrossRef]

Young, A. T.

Appl. Opt. (5)

Atmos. Environ. (1)

D. J. Gambling, K. Bartusek, Atmos. Environ. 6, 181 (1972).
[CrossRef]

Geophys. Res. Lett. (1)

R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980).
[CrossRef]

J. Atmos. Sci. (3)

P. B. Russell, R. D. Hake, J. Atmos. Sci. 34, 163 (1977).
[CrossRef]

P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).

M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978).
[CrossRef]

J. Atmos. Terr. Phys. (2)

D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971).
[CrossRef]

G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967).
[CrossRef]

J. Geophys. Res. (4)

G. Fiocco, G. W. Grams, J. Geophys. Res. 74, 2453 (1969).
[CrossRef]

B. R. Clemesha, D. M. Simonich, J. Geophys. Res. 83, 2403 (1978).
[CrossRef]

F. G. Fernald, B. G. Schuster, J. Geophys. Res. 82, 433 (1977).
[CrossRef]

J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).

Nature (1)

B. R. Clemesha, Y. Nakamura, Nature 237, 328 (1972).
[CrossRef]

Opt. Eng. (1)

R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978).
[CrossRef]

Tellus (1)

G. Fiocco, G. W. Grams, Tellus 18, 34 (1966).
[CrossRef]

Other (10)

G. Fiocco, G. W. Grams

W. E. Evans, “Design of an Airborne Lidar for Stratospheric Aerosol Measurements,” Final Report 5557, NASA contract NAS1-14520, SRI International, Menlo Park, Calif.,NASA Contract. Rep. 145179 (1977).

J. Laver, “Approach for Estimating Errors in Density Profiles,” Appendix D of SAGE Ground Truth Plan, NASA Tech. Memo. 80076 (1979).

R. D. Hudson, “Chlorofluoromethanes and the Stratosphere,” NASA Republ. 1010, (1977), p. 31.[Original reference: A. M. Bass, A. L. Ledford, A. H. Laufer, J. Res. Natl. Bur. Stand. Sect. A 80, 143 (1976).]
[CrossRef]

W. E. Evans, “Evaluation of a Near-Infrared Photomultiplier for Airborne Lidar Applications,” Final Report 6919, NASA contract NAS1-14520, SRI International, Menlo Park, Calif. (1978)NASA Contract. Rep. 145380 (1978).

R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1979).The eye safety guidelines in this report assume the ANSI criteria for maximum permissible ocular exposure viewed with the naked eye by day and a 10-in. telescope by night and with multiplicative safety factors of 10, 3, and 2 for scintillation hot spots, multimode laser beam inhomogeneities, and Gaussian beam shape, respectively. The first safety factor should be used in conjunction with either the second or third but not both.

“Shuttle Atmospheric Lidar Research Program,” Final Report of the Atmospheric Lidar Working Group, NASA Spec. Publ. 433 (NTIS, Springfield, Va., 1979).

W. E. Evans, “Remote Probing of High Cloud Cover via Satellite-Borne Lidar,” NASA Contract. Rep. 96893 (1968).

S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” Dept. of Meteorology, U. of Wisc., Madison 53706 (April1975),NASA Contract. Rep. 146134 (1975).

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Simulation procedure for evaluating lidar measurement and retrieval errors. Circles symbolize random number generators that inject simulated errors into derived quantities at appropriate steps. Numbers in parentheses indicate equations and tables in the text.

Fig. 2
Fig. 2

Model backscatter mixing ratio profiles, single-shot signal and background profiles for low-latitude model atmospheres.

Fig. 3
Fig. 3

Model backscatter mixing ratio profiles, single-shot signal and background profiles for mid-latitude model atmospheres.

Fig. 4
Fig. 4

Model backscatter mixing ratio profiles, single-shot signal and background profiles for high-latitude model atmospheres.

Fig. 5
Fig. 5

Low-latitude nighttime simulation results, 1.064 and 0.532, μm using conventional density data: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Fig. 6
Fig. 6

Low-latitude daytime simulation results, 1.064 and 0.532 μm, using conventional density data: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Fig. 7
Fig. 7

Mid-latitude nighttime simulation results, 1.064 and 0.532 μm, using conventional density data: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Fig. 8
Fig. 8

Mid-latitude daytime simulation results, 1.064 and 0.532 μm, using conventional density data: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Fig. 9
Fig. 9

High-latitude nighttime simulation results, 1.064 and 0.532 μm, using conventional density data: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Fig. 10
Fig. 10

High-latitude daytime simulation results, 1.064 and 0.532 μm, using conventional density data: (a) and (b) backscatter mixing ratio profiles; (c) and (d) relative uncertainty in particulate backscattering broken down by source.

Tables (3)

Tables Icon

Table I Assumed Lidar Parameters

Tables Icon

Table II Background Lighting (Zenith Upward Spectral Radiance) for a Downward-Viewing Lidar and Several Scenarios a

Tables Icon

Table III Representative 1σ Uncertainties in Density Profiles Derived from Conventional Sources a

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

R ( λ , z ) B p ( λ , z ) + B g ( λ , z ) B g ( λ , z ) = 1 + B p ( λ , z ) B g ( λ , z ) ,
R ( λ , z ) = ( z z L ) 2 S ( λ , z ) K ( λ ) Q 2 ( λ , z L , z ) D ( z ) ,
S ( λ , z ) = V ( λ , z ) G ( λ ) .
R ( λ , z ) = ( z z L ) 2 S ( λ , z ) Q 2 ( λ , z L , z * ) D ( z * ) ( z * z L ) 2 S ( λ , z * ) Q 2 ( λ , z L , z ) D ( z ) R min ( λ ) ,
R ( λ , z ) = h ( z z L , z * z L ) s ( λ , z , z * ) q ( λ , z , z * ) d ( z , z * ) R min ( λ ) ,
h ( z z L , z * z L ) ( z z L ) 2 ( z * z L ) 2 ,
s ( λ , z , z * ) S ( λ , z ) S ( λ , z * ) ,
q ( λ , z , z * ) Q 2 ( λ , z L , z ) Q 2 ( λ , z L , z * ) = exp { ± 2 [ z z * E ( λ , z ) d z ] } ,
d ( λ , z , z * ) = D ( z ) D ( z * ) ,
B p ( λ , z ) = B g ( λ , z ) [ R ( λ , z ) 1 ] .
( δ R R ) 2 = ( δ s s ) 2 + ( δ q q ) 2 + ( δ D D ) 2 + ( δ D * D * ) 2 C D D * 2 D D * + ( δ R min R min ) 2 ,
( δ B p B p ) 2 = ( B g B p ) 2 { [ ( δ s s ) 2 + ( δ q q ) 2 + ( δ R min R min ) 2 + ( δ ρ * ρ * ) 2 2 C 2 ρ ρ * R ρ ρ * ] R 2 + ( δ ρ ρ ) 2 } ,
ρ * ρ ( z * ) ,
I B ( λ ) = A F ( λ ) cos θ 0 / ( 0 2 π d ϕ 0 π / 2 cos θ sin θ d θ ) = A F ( λ ) cos θ 0 / ( π s r ) ,
( δ S S ) p c = δ N S N S = N S + N B + N D N S ,
δ S S = max [ ( δ S S ) p c , ( δ S S ) min ] .
( δ S S ) min = 0.005 .
( δ s s ) 2 = ( δ S S ) 2 + ( δ S * S * ) 2 ,
S * S ( λ , z * ) .
( δ q q ) 2 = 4 { [ δ τ p ( λ , z , z * ) ] 2 + [ δ τ s g ( λ , z , z * ) ] 2 + [ δ τ 3 ( λ , z , z * ) ] 2 } ,
δ τ 3 ( λ , z , z * ) = 0.2 τ 3 ( λ , z , z * ) .
δ τ s g ( λ , z , z * ) = 0.1 τ s g ( λ , z , z * )
δ τ s g ( λ , z , z * ) = [ δ Δ P ( z , z * ) / Δ P ( z , z * ) ] τ s g ( λ , z , z * ) ,
δ τ p ( λ , z , z * ) = 0.5 { [ τ a p ( λ , z , z * ) ] 2 + [ τ c p ( λ , z , z * ) ] 2 } 1 / 2

Metrics