Abstract

The optogalvanic effect in a commercial uranium hollow cathode discharge can be used in conjunction with the uranium atlas for wavelength calibration of pulsed lasers at wavelengths longer than 3500 Å. At shorter wavelengths photoelectric emission from the cathode surface interferes with the measurements. The use of a tubular hollow cathode eliminates interference from photoelectric emission and permits wavelength calibration at shorter wavelengths. The photoelectric emission is measured as a function of wavelength.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).
    [CrossRef]
  2. Burleigh Instruments, Inc., Burleigh Park, Fishers, N.Y. 14453.
  3. R. A. Keller, R. Engleman, B. A. Palmer, Appl. Opt. 19, 836 (1980).
    [CrossRef] [PubMed]
  4. B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos National Laboratory report LA-8251-MS (Los Alamos National Laboratory, Los Alamos, N.M., July1980).
  5. B. A. Palmer, R. Engleman, in preparation.
  6. B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, J. Opt. Soc. Am. 71, 948 (1981).
    [CrossRef]
  7. J. J. Snyder, “Fizeau Wavemeter,” in Proceedings, Los Alamos Conference on Optics, to be published (1981).
    [CrossRef]
  8. Design byB. E. Warner, Lawrence Livermore National Laboratory.
  9. G. Yamasaki, Westinghouse Laboratories; private communication.
  10. G. J. Beenen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
    [CrossRef]
  11. R. A. Keller, R. Engleman, E. F. Zalewski, J. Opt. Soc. Am. 69, 738 (1979).
    [CrossRef]
  12. R. J. Maurer, “Photoelectric Effect,” in Handbook of Physics, E. U. Condon, H. Odishaw, Eds. (McGraw-Hill, New York, (1967) 8–67 to 8–75.

1981 (2)

1980 (1)

1979 (1)

1976 (1)

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Beenen, G. J.

G. J. Beenen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
[CrossRef]

Engleman, R.

R. A. Keller, R. Engleman, B. A. Palmer, Appl. Opt. 19, 836 (1980).
[CrossRef] [PubMed]

R. A. Keller, R. Engleman, E. F. Zalewski, J. Opt. Soc. Am. 69, 738 (1979).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos National Laboratory report LA-8251-MS (Los Alamos National Laboratory, Los Alamos, N.M., July1980).

B. A. Palmer, R. Engleman, in preparation.

Hall, J. L.

Keller, R. A.

B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, J. Opt. Soc. Am. 71, 948 (1981).
[CrossRef]

R. A. Keller, R. Engleman, B. A. Palmer, Appl. Opt. 19, 836 (1980).
[CrossRef] [PubMed]

R. A. Keller, R. Engleman, E. F. Zalewski, J. Opt. Soc. Am. 69, 738 (1979).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos National Laboratory report LA-8251-MS (Los Alamos National Laboratory, Los Alamos, N.M., July1980).

Kowalski, F. V.

Lee, S. A.

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Maurer, R. J.

R. J. Maurer, “Photoelectric Effect,” in Handbook of Physics, E. U. Condon, H. Odishaw, Eds. (McGraw-Hill, New York, (1967) 8–67 to 8–75.

Palmer, B. A.

B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, J. Opt. Soc. Am. 71, 948 (1981).
[CrossRef]

R. A. Keller, R. Engleman, B. A. Palmer, Appl. Opt. 19, 836 (1980).
[CrossRef] [PubMed]

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos National Laboratory report LA-8251-MS (Los Alamos National Laboratory, Los Alamos, N.M., July1980).

B. A. Palmer, R. Engleman, in preparation.

Piepmeier, E. H.

G. J. Beenen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
[CrossRef]

Snyder, J. J.

J. J. Snyder, “Fizeau Wavemeter,” in Proceedings, Los Alamos Conference on Optics, to be published (1981).
[CrossRef]

Warner, B. E.

Design byB. E. Warner, Lawrence Livermore National Laboratory.

Yamasaki, G.

G. Yamasaki, Westinghouse Laboratories; private communication.

Zalewski, E. F.

Anal. Chem. (1)

G. J. Beenen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

J. Opt. Soc. Am. (2)

Other (7)

R. J. Maurer, “Photoelectric Effect,” in Handbook of Physics, E. U. Condon, H. Odishaw, Eds. (McGraw-Hill, New York, (1967) 8–67 to 8–75.

J. J. Snyder, “Fizeau Wavemeter,” in Proceedings, Los Alamos Conference on Optics, to be published (1981).
[CrossRef]

Design byB. E. Warner, Lawrence Livermore National Laboratory.

G. Yamasaki, Westinghouse Laboratories; private communication.

Burleigh Instruments, Inc., Burleigh Park, Fishers, N.Y. 14453.

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos National Laboratory report LA-8251-MS (Los Alamos National Laboratory, Los Alamos, N.M., July1980).

B. A. Palmer, R. Engleman, in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Uranium tubular discharge tube. The main portion of the tube is constructed of Pyrex, with glass to metal seals near the standard Varian flanges. The 1.9-cm (3/4-in.) copper feedthrough is electrically isolated from the flange. The Pyrex sleeve is provided with holes for unimpeded passage of the discharge. This drawing is to the scale indicated.

Fig. 2
Fig. 2

OGE electronic circuit. The ballast resistor is rated at 55 W and is enclosed in a forced air-cooled box.

Fig. 3
Fig. 3

Time-resolved OGS of the uranium 5905.12-Å line. The boxcar gate width was 0.5 μsec.

Fig. 4
Fig. 4

Comparison of the visible uranium OGS from the tubular discharge tube (top) and a commercial uranium hollow cathode tube (middle) with the visible emission spectrum from a commercial hollow cathode tube (bottom).

Fig. 5
Fig. 5

Comparison of the ultraviolet OGS from the tubular discharge tube (top) with the ultraviolet emission from a commercial hollow cathode lamp (bottom).

Fig. 6
Fig. 6

Nonresonant OGS as a function of photon energy. The pulse energy was 120 μJ, unfocused and apertured to just fill the cathode hole.

Tables (2)

Tables Icon

Table I Comparison of OGS in Tubular and Commercial Discharge Tubes with the Uranium Emission Spectrum Visible Spectral Region

Tables Icon

Table II Comparison of the OGS in the Tubular Discharge Tube with the Uranium Emission Spectrum-Ultraviolet Spectral Region

Metrics