Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optogalvanic effect in a hollow cathode discharge with nonlaser sources

Not Accessible

Your library or personal account may give you access

Abstract

Several atomic emission sources were investigated for their potential to induce optogalvanic signals in hollow cathode lamps. The sources included an inductively coupled argon plasma, a H2–O2 flame, a high-temperature furnace, electrodeless microwave discharge lamps, and hollow cathode lamps. Successful results were obtained with argon emission from the inductively coupled plasma focused into an argon-filled hollow cathode tube and with atomic emission from one hollow cathode discharge focused into a hollow cathode tube containing the same element. Very low level optogalvanic signals were observed from the other sources but could not be unambiguously ascribed to emission from a specific element. A problem encountered was the presence of a background signal due to photoelectric emission and possibly radiative heating of the cathode.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This
Mechanistic study of the optogalvanic effect in a hollow-cathode discharge

C. Drèze, Y. Demers, and J. M. Gagné
J. Opt. Soc. Am. 72(7) 912-917 (1982)

Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge

V. K. Saini, P. Kumar, S. K. Dixit, and S. V. Nakhe
Appl. Opt. 53(19) 4320-4326 (2014)

Optogalvanic detection of the Zeeman effect in a hollow-cathode discharge

Etienne Langlois and Jean-Marie Gagné
J. Opt. Soc. Am. B 4(7) 1222-1226 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.