Abstract

A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2× are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.

© 1982 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Concentration of solar radiation by white backed photovoltaic panels

Greg Smestad and Patrick Hamill
Appl. Opt. 23(23) 4394-4402 (1984)

Exploration of external light trapping for photovoltaic modules

Lourens van Dijk, Jorik van de Groep, Marcel Di Vece, and Ruud E. I. Schropp
Opt. Express 24(14) A1158-A1175 (2016)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription