Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Dainty, Ed., Laser Speckle and Related Phenomena (Springer, New York, 1975).
  2. J. S. Lim, H. Nawab, Opt. Eng. 20, 472 (1981).
    [CrossRef]
  3. J. S. Lee, Computer Graphics and Image Processing 17, 24 (1981).
    [CrossRef]
  4. A. K. Jain, C. R. Christensen, Applications of Speckle Phenomena, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).
    [CrossRef]
  5. H. Kato, J. W. Goodman, Appl. Opt. 14, 1813 (1975).
    [CrossRef] [PubMed]
  6. H. H. Arsenault, G. April, J. Opt. Soc. Am. 66, 1160 (1976).
    [CrossRef]
  7. C. R. Christensen et al., “Object detectability in speckle noise,” paper presented at International Conference on Lasers, Orlando, Fla., Dec. 1978.
  8. S. J. Lowenthal, H. H. Arsenault, J. Opt. Soc. Am. 60, 1478 (1970).
    [CrossRef]
  9. J. W. Goodman, in Ref. 1.

1981 (2)

J. S. Lim, H. Nawab, Opt. Eng. 20, 472 (1981).
[CrossRef]

J. S. Lee, Computer Graphics and Image Processing 17, 24 (1981).
[CrossRef]

1980 (1)

A. K. Jain, C. R. Christensen, Applications of Speckle Phenomena, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).
[CrossRef]

1976 (1)

1975 (1)

1970 (1)

April, G.

Arsenault, H. H.

Christensen, C. R.

A. K. Jain, C. R. Christensen, Applications of Speckle Phenomena, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).
[CrossRef]

C. R. Christensen et al., “Object detectability in speckle noise,” paper presented at International Conference on Lasers, Orlando, Fla., Dec. 1978.

Goodman, J. W.

Jain, A. K.

A. K. Jain, C. R. Christensen, Applications of Speckle Phenomena, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).
[CrossRef]

Kato, H.

Lee, J. S.

J. S. Lee, Computer Graphics and Image Processing 17, 24 (1981).
[CrossRef]

Lim, J. S.

J. S. Lim, H. Nawab, Opt. Eng. 20, 472 (1981).
[CrossRef]

Lowenthal, S. J.

Nawab, H.

J. S. Lim, H. Nawab, Opt. Eng. 20, 472 (1981).
[CrossRef]

Appl. Opt. (1)

Applications of Speckle Phenomena (1)

A. K. Jain, C. R. Christensen, Applications of Speckle Phenomena, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).
[CrossRef]

Computer Graphics and Image Processing (1)

J. S. Lee, Computer Graphics and Image Processing 17, 24 (1981).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Eng. (1)

J. S. Lim, H. Nawab, Opt. Eng. 20, 472 (1981).
[CrossRef]

Other (3)

J. C. Dainty, Ed., Laser Speckle and Related Phenomena (Springer, New York, 1975).

J. W. Goodman, in Ref. 1.

C. R. Christensen et al., “Object detectability in speckle noise,” paper presented at International Conference on Lasers, Orlando, Fla., Dec. 1978.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical system d(x′,y′) and t(x′,y′) are, respectively, the complex transmittances of the diffuser and object transparency.

Fig. 2
Fig. 2

Same as Fig. 1 but with a sharp-edge object. R cell - is the part of the system’s resolution cell (Rcell) which is blocked by the object.

Fig. 3
Fig. 3

Spatial variation of M(x,y) for a sharp edge object. The incoherent image of the sharp edge is also included. The abscissa is scaled by the transverse dimension of Rcell. λ is the wavelength, f is the focal length of the imaging system, and a is the size of its square aperture.

Fig. 4
Fig. 4

Same as Fig. 3 but for two slanted objects (see insert). While the change in object 1 occurs on a scale comparable with Rcell, object 2 is fully resolved by the system. The incoherent impulse response of the system is also included in the insert.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I t s ( x , y ) = α · I inc ( x , y ) · I s ( x , y ) ,
I t s ( x , y ) = I inc ( x , y ) ; I t s 2 ( x , y ) = 2 I inc 2 ( x , y ) ,
I t s ( x p , y p ) = U ( x p , y p ) 2 = | R cell d x d y × h ( x p - x , y p - y ) t ( x , y ) exp [ i φ ( x , y ) ] | 2 ,
I t s ( x p , y p ) = t ( x p , y p ) 2 | R cell d x d y × h ( x p - x , y p - y ) exp [ i φ ( x , y ) ] | 2 .
p ( I s , I t s ) = 1 ( I s ) - I t s ) I t s × exp [ - I t s I s + I s I t s ( I s - I t s ) I t s ] I 0 ( 2 I s I t s ( I s - I t s ) ) ,
p ( Q ) = 2 Q ( B - 1 ) Q 2 + B ( B - 1 ) [ Q 4 + 2 ( B - 2 ) Q 2 + B 2 ] 3 / 2 ,
M ( x , y ) = [ I t s ( x , y ) - α · I inc ( x , y ) · I s ( x , y ) ] 2 .
M ( x , y ) = 2 I inc 2 ( x , y ) [ 2 - I t s ( x , y ) · I s ( x , y ) I inc ( x , y ) · I s ( x , y ) ] .
I t s ( x , y ) · I s ( x , y ) = U t s ( x , y ) U t s * ( x , y ) U s ( x , y ) U s * ( x , y ) = I inc ( x , y ) · I s ( x , y ) + U t s ( x , y ) U s * ( x , y ) 2 .
M ( x , y ) = 2 I inc 2 ( x , y ) [ 1 - U t s ( x , y ) U s * ( x , y ) 2 I inc ( x , y ) · I s ( x , y ) ] .
M ( x , y ) 2 I inc 2 ( x , y ) = 1 - | - + d x d y t ( x , y ) | h ( x - x , y - y ) | 2 2 - + d x d y t ( x , y ) 2 h ( x - x , y - y ) 2 · - + d x d y h ( x - x , y - y ) 2 .

Metrics