Abstract

A six-mirror ring cavity suitable for passively mode-locked dye lasers is analyzed approximately and also modeled on the computer. Results are useful in design and alignment of the laser cavity.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
    [CrossRef]
  2. K. K. Li, A. Dienes, J. R. Whinnery, Appl. Opt. 20, 407 (1981).
    [CrossRef] [PubMed]
  3. R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
    [CrossRef]
  4. H. W. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  5. G. H. C. New, IEEE J. Quantum Electron. QE-10, 115 (1974).
    [CrossRef]

1981 (2)

K. K. Li, A. Dienes, J. R. Whinnery, Appl. Opt. 20, 407 (1981).
[CrossRef] [PubMed]

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

1974 (1)

G. H. C. New, IEEE J. Quantum Electron. QE-10, 115 (1974).
[CrossRef]

1972 (1)

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

1966 (1)

Dienes, A.

K. K. Li, A. Dienes, J. R. Whinnery, Appl. Opt. 20, 407 (1981).
[CrossRef] [PubMed]

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Fork, R. L.

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Greene, B. I.

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

H. W. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
[CrossRef] [PubMed]

Li, K. K.

Li, T.

New, G. H. C.

G. H. C. New, IEEE J. Quantum Electron. QE-10, 115 (1974).
[CrossRef]

Shank, C. V.

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Whinnery, J. R.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. H. C. New, IEEE J. Quantum Electron. QE-10, 115 (1974).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A six-mirror mode-locked ring dye laser.

Fig. 2
Fig. 2

Equivalent empty resonators with internal lens of a six-mirror ring cavity. M1 through M8 are matrices of the optical elements shown.

Fig. 3
Fig. 3

Stability regions of a six-mirror ring cavity from approximate analytic formula. Parameters are l1 = 60 cm, l2 = 180 cm, r1 = 10 cm, r2 = 10 cm, d1 = 10 cm, d2 = 10 cm, θ = 0°.

Fig. 4
Fig. 4

Stability regions of a six-mirror ring cavity from exact numerical calculations. Parameters are the same as in Fig. 3.

Fig. 5
Fig. 5

Stability regions of a six-mirror ring cavity with different amounts of astigmatism as shown. Besides the value θ, parameters are shown in Fig. 3. Dotted and solid lines represent regions in the tangential and sagittal planes, respectively. The dotted area is the stable region.

Fig. 6
Fig. 6

(a) Stability regions with different cavity lengths and other parameters fixed. Regions bounded by dotted lines result from cavity length three times smaller than those bounded by solid lines. (b) Stability regions with different values of r1 and other parameters fixed. Regions bounded by dotted lines result from r1 = 10 cm and the other from r1 = 5 cm.

Fig. 7
Fig. 7

Stability diagram for laser cavity pumped by cw argon laser.

Fig. 8
Fig. 8

Stability diagram for laser cavity pumped by xenon laser.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M 0 = M 1 , M 2 , , M 8 = ( A 0 B 0 C 0 B 0 )
| A 0 + D 0 2 | 1.
A 0 = l 1 l 2 4 f 1 2 f 2 2 δ 1 δ 2 - l 2 2 f 2 2 δ 2 .
D 0 = 9 - l 1 2 f 1 2 δ 1 ,
- 10 ( l 1 2 f 1 2 δ 1 - 1 ) ( l 2 2 f 2 2 δ 2 - 1 ) - 6.
f t = R cos θ / 2 ,
f s = R / ( 2 cos θ ) .

Metrics