Abstract

Nonresonant sum- and difference-frequency mixing of the fundamental ωL and the second harmonic ωUV radiation of a powerful narrowband pulsed dye laser system excited by an Nd:YAG laser (λL = 5500–6500 Å) generates intense VUV radiation in krypton and xenon with the frequency ωVUV = 2ωUV ± ωL. The sum-frequency is tunable in spectral regions of negative dispersion between 1100 and 1300 Å. The maximum VUV pulse power exceeds 20 W (5 × 1010 photons/pulse). VUV light pulses with up to 60 W (2.3 × 1011 photons/pulse) are provided by the difference-frequency at wavelengths between 1850 and 2070 Å. In addition the conversion process ωVUV = 2ωUVωIR (ωIR is the frequency of the Nd:YAG laser) generates radiation in the wavelength range of 1595–1866 Å. With present laser systems the tuning range of the difference-frequency could be extended to wavelengths as short as 1226 Å. The sum- and difference-frequency conversion will thus provide intense coherent VUV light continuously tunable between 1100 and 2100 Å.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 310 (1973); Appl. Phys. Lett. 28, 239 (1976).
    [CrossRef]
  2. A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
    [CrossRef]
  3. R. Mahon, T. J. McIlrath, D. W. Koopman, Appl. Phys. Lett. 33, 305 (1978).
    [CrossRef]
  4. D. Cotter, Opt. Commun. 31, 397 (1979).
    [CrossRef]
  5. R. Wallenstein, Opt. Commun. 33, 119 (1980).
    [CrossRef]
  6. H. Langer, H. Puell, H. Röhr, Opt. Commun. 34, 137 (1980).
    [CrossRef]
  7. R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
    [CrossRef]
  8. W. Zapka, D. Cotter, U. Brackmann, Opt. Commun. 36, 79 (1981).
    [CrossRef]
  9. G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
    [CrossRef]
  10. R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
    [CrossRef]
  11. R. Wallenstein, H. Zacharias, Opt. Commun. 32, 429 (1980).
    [CrossRef]
  12. J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
    [CrossRef]
  13. R. Mahon, Y. M. Yiu, Opt. Lett. 5, 279 (1980).
    [CrossRef] [PubMed]
  14. J. Reintjes, Appl. Opt. 19, 3889 (1980).
    [CrossRef] [PubMed]
  15. P. J. Leonhard, At. Nucl. Data Tables 14, 21 (1974).
    [CrossRef]
  16. Electronic line narrowing device model ELN 1 (Quanta Ray Inc.).
  17. Y. R. Park, R. L. Byer, Opt. Commun. 37, 411 (1981).
    [CrossRef]

1981 (3)

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

W. Zapka, D. Cotter, U. Brackmann, Opt. Commun. 36, 79 (1981).
[CrossRef]

Y. R. Park, R. L. Byer, Opt. Commun. 37, 411 (1981).
[CrossRef]

1980 (6)

R. Wallenstein, H. Zacharias, Opt. Commun. 32, 429 (1980).
[CrossRef]

J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
[CrossRef]

R. Mahon, Y. M. Yiu, Opt. Lett. 5, 279 (1980).
[CrossRef] [PubMed]

J. Reintjes, Appl. Opt. 19, 3889 (1980).
[CrossRef] [PubMed]

R. Wallenstein, Opt. Commun. 33, 119 (1980).
[CrossRef]

H. Langer, H. Puell, H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

1979 (2)

D. Cotter, Opt. Commun. 31, 397 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
[CrossRef]

1978 (1)

R. Mahon, T. J. McIlrath, D. W. Koopman, Appl. Phys. Lett. 33, 305 (1978).
[CrossRef]

1975 (1)

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

1974 (2)

A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

P. J. Leonhard, At. Nucl. Data Tables 14, 21 (1974).
[CrossRef]

1973 (1)

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 310 (1973); Appl. Phys. Lett. 28, 239 (1976).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

Brackmann, U.

W. Zapka, D. Cotter, U. Brackmann, Opt. Commun. 36, 79 (1981).
[CrossRef]

Byer, R. L.

Y. R. Park, R. L. Byer, Opt. Commun. 37, 411 (1981).
[CrossRef]

Compton, R. N.

J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
[CrossRef]

Cotter, D.

W. Zapka, D. Cotter, U. Brackmann, Opt. Commun. 36, 79 (1981).
[CrossRef]

D. Cotter, Opt. Commun. 31, 397 (1979).
[CrossRef]

Garrett, W. R.

J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
[CrossRef]

Harris, S. E.

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 310 (1973); Appl. Phys. Lett. 28, 239 (1976).
[CrossRef]

Hilbig, R.

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

Koopman, D. W.

R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, D. W. Koopman, Appl. Phys. Lett. 33, 305 (1978).
[CrossRef]

Kung, A. H.

A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 310 (1973); Appl. Phys. Lett. 28, 239 (1976).
[CrossRef]

Langer, H.

H. Langer, H. Puell, H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Leonhard, P. J.

P. J. Leonhard, At. Nucl. Data Tables 14, 21 (1974).
[CrossRef]

Mahon, R.

R. Mahon, Y. M. Yiu, Opt. Lett. 5, 279 (1980).
[CrossRef] [PubMed]

R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, D. W. Koopman, Appl. Phys. Lett. 33, 305 (1978).
[CrossRef]

McIlrath, T. J.

R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, D. W. Koopman, Appl. Phys. Lett. 33, 305 (1978).
[CrossRef]

Miller, J. C.

J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
[CrossRef]

Myerscough, V. P.

R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
[CrossRef]

Park, Y. R.

Y. R. Park, R. L. Byer, Opt. Commun. 37, 411 (1981).
[CrossRef]

Payne, M. G.

J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
[CrossRef]

Puell, H.

H. Langer, H. Puell, H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Reintjes, J.

Röhr, H.

H. Langer, H. Puell, H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Wallenstein, R.

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

R. Wallenstein, Opt. Commun. 33, 119 (1980).
[CrossRef]

R. Wallenstein, H. Zacharias, Opt. Commun. 32, 429 (1980).
[CrossRef]

Yiu, Y. M.

Young, J. F.

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 310 (1973); Appl. Phys. Lett. 28, 239 (1976).
[CrossRef]

Zacharias, H.

R. Wallenstein, H. Zacharias, Opt. Commun. 32, 429 (1980).
[CrossRef]

Zapka, W.

W. Zapka, D. Cotter, U. Brackmann, Opt. Commun. 36, 79 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 310 (1973); Appl. Phys. Lett. 28, 239 (1976).
[CrossRef]

A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

R. Mahon, T. J. McIlrath, D. W. Koopman, Appl. Phys. Lett. 33, 305 (1978).
[CrossRef]

At. Nucl. Data Tables (1)

P. J. Leonhard, At. Nucl. Data Tables 14, 21 (1974).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

R. Mahon, T. J. McIlrath, V. P. Myerscough, D. W. Koopman, IEEE J. Quantum Electron. QE-15, 444 (1979).
[CrossRef]

Opt. Commun. (6)

R. Wallenstein, H. Zacharias, Opt. Commun. 32, 429 (1980).
[CrossRef]

D. Cotter, Opt. Commun. 31, 397 (1979).
[CrossRef]

R. Wallenstein, Opt. Commun. 33, 119 (1980).
[CrossRef]

H. Langer, H. Puell, H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

W. Zapka, D. Cotter, U. Brackmann, Opt. Commun. 36, 79 (1981).
[CrossRef]

Y. R. Park, R. L. Byer, Opt. Commun. 37, 411 (1981).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. C. Miller, R. N. Compton, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).
[CrossRef]

Other (1)

Electronic line narrowing device model ELN 1 (Quanta Ray Inc.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Output power and tuning range of the VUV generated by sum-frequency mixing ωVUV = 2ωUV + ωL in krypton and xenon. Corresponding experimental parameters are listed in Table I.

Fig. 2
Fig. 2

Dependence of the generated Lα = 1216-Å radiation on the pulse power PUV of the UV laser light and on PL the laser output at λL = 6077 Å: (A) PL = 3.2 MW; (B) PUV = 1 MW.

Fig. 3
Fig. 3

Intensity of the VUV generated in Xe at λVUV = 1183 Å by the fifth harmonic ωVUV = 5ωL and by the sum-frequency ωVUV = 2ωUV + ωL.

Fig. 4
Fig. 4

Output power and tuning range of the VUV generated in xenon by difference frequency conversion ωVUV = 2ωUVωIR (A, B, and C) and ωVUV = 2ωUVωL (D and E). The pulse power of the IR radiation was ~1 MW. Further experimental parameters are listed in Table II.

Fig. 5
Fig. 5

Tuning range of the nonresonant sum- and difference-frequency conversion in Kr and Xe of UV dye laser radiation (ωUV = 2ωL or ω UV + ω UV + ω IR), visible dye laser light ωL, and the IR radiation ωIR of a Nd:YAG laser. The VUV generated by the mixing processes A–E require dye laser radiation of the following wavelength: A, λL = 5500–6500 Å (dye: Rh 6G, Rh 620, Rh 640, and DCM); B, CI, DII, and EII, λL = 5500–6300 Å (dye: Rh 6G, Rh 620, Rh 640); CII, λL = 6300–6700 Å (dye: DCM); DI and El, λL = 5180–5500 Å (dye: coumarin 485 and 500).

Tables (2)

Tables Icon

Table I Experimental Parameters of the Sum-Frequency Generation in Krypton and Xenon (Fig. 1). a

Tables Icon

Table II Experimental Parameters of the Difference-Frequency Conversion in Xenon (Fig. 4)

Metrics