M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1979).

T. A. Nussmeier, S. H. Brewer, “Optical Analysis for Laser Heterodyne Communication System,” Hughes Research Laboratory Report on contract NAS 5-21898 (1974).

S. F. Clifford, T. R. Lawrence, G. R. Ochs, Ting-i Wang, “Study of a Pulsed Laser for Cross-wind Sensing,” NOAA Technical Memo ERL WPL-48 (1980).

A. Thomson, M. F. Dorian, “Heterodyne Detection of Monochromatic Light Scattered from a Cloud of Moving Particles,” General Dynamics Convair Division report GNC-ERR-Nov-1090 (1967).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950).

S. F. Clifford, T. R. Lawrence, G. R. Ochs, Ting-i Wang, “Study of a Pulsed Laser for Cross-wind Sensing,” NOAA Technical Memo ERL WPL-48 (1980).

T. A. Nussmeier, S. H. Brewer, “Optical Analysis for Laser Heterodyne Communication System,” Hughes Research Laboratory Report on contract NAS 5-21898 (1974).

S. F. Clifford, T. R. Lawrence, G. R. Ochs, Ting-i Wang, “Study of a Pulsed Laser for Cross-wind Sensing,” NOAA Technical Memo ERL WPL-48 (1980).

J. T. Priestley, NOAA Wave Propagation Laboratory; unpublished.

A. Thomson, M. F. Dorian, “Heterodyne Detection of Monochromatic Light Scattered from a Cloud of Moving Particles,” General Dynamics Convair Division report GNC-ERR-Nov-1090 (1967).

S. F. Clifford, T. R. Lawrence, G. R. Ochs, Ting-i Wang, “Study of a Pulsed Laser for Cross-wind Sensing,” NOAA Technical Memo ERL WPL-48 (1980).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

J. T. Priestley, NOAA Wave Propagation Laboratory; unpublished.

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950).

The numerical computation of the 2-D autocorrelation function μ(b) was, of course, slow. It would be useful for anyone intending to repeat this exercise to note that because the integrand is Hermitian and the optical system symmetric about the tangential plane, it is necessary only to compute the contribution to A from a single quadrant in the b plane bounded by the tangential and sagittal planes and multiply the result by 4.

A. Thomson, M. F. Dorian, “Heterodyne Detection of Monochromatic Light Scattered from a Cloud of Moving Particles,” General Dynamics Convair Division report GNC-ERR-Nov-1090 (1967).

S. F. Clifford, T. R. Lawrence, G. R. Ochs, Ting-i Wang, “Study of a Pulsed Laser for Cross-wind Sensing,” NOAA Technical Memo ERL WPL-48 (1980).

The complete mirror aberration function was computed numerically for the curves of Figs. (10) and (11), but in each case use of the primary aberration formulas was an adequate approximation.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1979).

T. A. Nussmeier, S. H. Brewer, “Optical Analysis for Laser Heterodyne Communication System,” Hughes Research Laboratory Report on contract NAS 5-21898 (1974).