Abstract

In a conventional confocal microscope the resolution is improved over that attainable in a conventional instrument. A further improvement in resolution is produced when the detector pinhole is offset resulting in nearly confocal operation. For the case where the pinhole is placed over the first dark ring in the Airy disk in the detector plane, dark-field conditions are produced by a very simple method.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Appl. Phys. 22, 119 (1980).
    [CrossRef]
  2. C. J. R. Sheppard, A. Choudhury, Opt. Acta 24, 1051 (1977).
    [CrossRef]
  3. C. J. R. Sheppard, T. Wilson, Optik 55, 331 (1980).
  4. M. M. Agrest, M. S. Maksimov, Theory of Incomplete Cylindrical Functions and Their Applications (Springer, New York, 1971).
    [CrossRef]
  5. T. Wilson, C. J. R. Sheppard, Optik 59, 19 (1981).

1981 (1)

T. Wilson, C. J. R. Sheppard, Optik 59, 19 (1981).

1980 (2)

C. J. R. Sheppard, T. Wilson, Optik 55, 331 (1980).

T. Wilson, Appl. Phys. 22, 119 (1980).
[CrossRef]

1977 (1)

C. J. R. Sheppard, A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Agrest, M. M.

M. M. Agrest, M. S. Maksimov, Theory of Incomplete Cylindrical Functions and Their Applications (Springer, New York, 1971).
[CrossRef]

Choudhury, A.

C. J. R. Sheppard, A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Maksimov, M. S.

M. M. Agrest, M. S. Maksimov, Theory of Incomplete Cylindrical Functions and Their Applications (Springer, New York, 1971).
[CrossRef]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Optik 59, 19 (1981).

C. J. R. Sheppard, T. Wilson, Optik 55, 331 (1980).

C. J. R. Sheppard, A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Wilson, T.

T. Wilson, C. J. R. Sheppard, Optik 59, 19 (1981).

T. Wilson, Appl. Phys. 22, 119 (1980).
[CrossRef]

C. J. R. Sheppard, T. Wilson, Optik 55, 331 (1980).

Appl. Phys. (1)

T. Wilson, Appl. Phys. 22, 119 (1980).
[CrossRef]

Opt. Acta (1)

C. J. R. Sheppard, A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Optik (2)

C. J. R. Sheppard, T. Wilson, Optik 55, 331 (1980).

T. Wilson, C. J. R. Sheppard, Optik 59, 19 (1981).

Other (1)

M. M. Agrest, M. S. Maksimov, Theory of Incomplete Cylindrical Functions and Their Applications (Springer, New York, 1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Confocal scanning microscope.

Fig. 2
Fig. 2

Normalized intensity distribution in the direction of offset against normalized distance from the optic axis of a point image for a confocal microscope with various values of pinhole displacement.

Fig. 3
Fig. 3

Normalized ratio of outer sidelobe intensity to central intensity against offset for a nearly confocal microscope.

Fig. 4
Fig. 4

Two-point resolution against pinhole offset for a nearly confocal microscope.

Fig. 5
Fig. 5

Normalized coherent transfer function in direction of offset against normalized spatial frequency for various values of pinhole displacement.

Fig. 6
Fig. 6

Normalized coherent transfer function in direction perpendicular to offset against normalized spatial frequency for various values of pinhole displacement.

Fig. 7
Fig. 7

Normalized intensity image of a straight edge for a confocal microscope with various offsets.

Fig. 8
Fig. 8

(a) Conventional confocal image of an integrated circuit. (b) Confocal image with offset. (c) Confocal image with dark-field offset.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

h ( v ) = [ 2 J 1 ( v ) ] / v ,
v = k r sin 2 α
I ( v ) = [ 2 J 1 ( v - v ¯ ) v - v ¯ ] 2 [ 2 J 1 ( v + v ¯ ) v + v ¯ ] 2 .
I ( 0 ) = [ 2 J 1 ( v ¯ ) v ¯ ] 4 ,
I ( v ) = 64 π 2 v 2 cos 2 ( v - v ¯ - 3 π 4 ) cos 2 ( v + v ¯ - 3 π 4 )
= 16 π 2 v 2 ( cos 2 v ¯ - sin 2 v ) 2 .
S ( v ) = [ v ¯ cos v ¯ 2 J 1 ( v ¯ ) ] 4 cos 2 v ¯ + v e = [ v ¯ sin v ¯ 2 J 1 ( v ¯ ) ] 4 cos 2 v ¯ - v e } ,
c ( m ˜ ) = 4 π 0 cos - 1 ( m ˜ / 2 ) cos [ v ¯ ( 2 cos θ - m ˜ ) ] sin 2 θ d θ             0 m ˜ 2 ,
c ( m ˜ ) = cos ( v ¯ m ˜ ) [ 2 J 1 ( cos - 1 m ˜ / 2 , 2 v ¯ ) 2 v ¯ ] + sin ( v ¯ m ˜ ) [ 2 H 1 ( cos - 1 m ˜ / 2 , 2 v ¯ ) 2 v ¯ ]             0 m ˜ 2.
c ( 0 ) = 2 J 1 ( 2 v ¯ ) 2 v ¯ ,
c ( n ˜ ) = 4 π 0 cos - 1 ( n ˜ / 2 ) cos ( 2 v ¯ sin θ ) × ( cos θ - n ˜ / 2 ) cos θ d θ             0 n 2 ,
c ( n ˜ ) = { 2 J 1 ( π / 2 , 2 v ¯ ) 2 v ¯ - 2 J 1 ( sin - 1 n ˜ / 2 , 2 v ¯ ) 2 v ¯ - 4 π n ˜ / 2 1 - ( n ˜ / 2 ) 2 [ sin 2 v ¯ 1 - ( n ˜ / 2 ) 2 2 v ¯ 1 - ( n ˜ / 2 ) 2 ] } .
I ( x ) = | - + c ( m ˜ ) T ( m ˜ ) exp ( 2 π m ˜ x ) d m | 2 ,
I ( x ) = c ( o ) - 0 c ( m ˜ ) sin 2 π m ˜ x π m ˜ d m ˜
I ( x ) = 2 J 1 , ( 2 v ¯ ) 2 v ¯ - 0 c ( m ˜ ) sin 2 π m ˜ x π m ˜ d m ˜ ,

Metrics