Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1975), p. E219.
  2. E. E. Wahlstrom, Optical Crystallography (Wiley, New York, 1969).

Wahlstrom, E. E.

E. E. Wahlstrom, Optical Crystallography (Wiley, New York, 1969).

Other (2)

R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1975), p. E219.

E. E. Wahlstrom, Optical Crystallography (Wiley, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical arrangement of the vertometer, the instrument used to measure the front or back vertex power of the test lens.

Fig. 2
Fig. 2

Ideal position of the lens and liquid cell relative to the back focal point F′ of the collimating lens.

Tables (1)

Tables Icon

Table I Successive Estimates of the Refractive Index of the Lens Described in the Text, Using the Thick Lens Eq. (4) a and Thin Lens Eq. (5)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

K v = x K 2 ,
K v = ( μ - n ) [ ( c 1 - c 2 ) + ( μ - n ) c 1 c 2 d μ ] 1 + c 2 ( μ - n ) d μ ,
( μ - n ) [ ( c 1 - c 2 ) + ( μ - n ) c 1 c 2 d μ ] 1 + c 2 ( μ - n ) d μ = x K 2 ,
μ 2 ( c 1 - c 2 + c 1 c 2 d ) - μ [ n ( c 1 - c 2 ) + 2 n c 1 c 2 d + x K 2 ( d c 2 + 1 ) ] + d c 2 n ( n c 2 + x K 2 ) = 0 ,
μ = n + x K 2 ( c 1 - c 2 ) ( thin lens solution ) .
c 1 = 0.0375 ± 0.0002 mm - 1 , c 2 = - 0.0638 ± 0.0006 mm - 1 , d = 5.49 ± 0.01 mm , diam = 18 mm .
Δ μ = Δ x K 2 ( c 1 - c 2 ) .

Metrics