Abstract

It is shown that by using the conical diffraction mount existing echelle gratings can be used at grazing incidence to achieve high spectral resolution in the extreme UV and soft x rays. Design considerations for grazing incidence echelle spectrographs are examined, and two sample designs are discussed. The first, for use in the extreme UV has a primary mirror and an entrance slit to the spectrograph. The system has resolution of 104, operates at any wavelength longward of 100 Å, and covers 30% of the spectrum at a single setting. The x-ray spectrograph uses objective gratings to obtain spectral resolution of 2.8 × 104 over any factor of 2 in wavelength. It operates to wavelengths as short as 4 Å.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Boggess et al., Nature London 275, 372 (1978).
    [CrossRef]
  2. W. Werner, Appl. Opt. 16, 2078 (1977).
    [CrossRef] [PubMed]
  3. M. Neviere, P. Vincent, D. Maystre, Appl. Opt. 17, 843 (1978).
    [CrossRef] [PubMed]
  4. M. Neviere, D. Maystre, W. R. Hunter, J. Opt. Soc. Am. 68, 1106 (1978).
    [CrossRef]
  5. P. Vincent, M. Neviere, D. Maystre, Appl. Opt. 18, 1780 (1979).
    [CrossRef] [PubMed]
  6. W. Werner, H. Visser, Appl. Opt. 20, 487 (1981).
    [CrossRef] [PubMed]
  7. D. J. Schroeder, Appl. Opt. 6, 1981 (1967).
    [CrossRef]
  8. M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).
  9. R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).
  10. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).
  11. W. Cash, R. Kohnert, in preparation (1981).
  12. W. A. Rense, Space Science Reviews, Vol. 5, C. deJager, Ed. (Reidel Publishing Co., Dordrecht, Holland, 1966), p. 234.
    [CrossRef]
  13. W. McClintock, Publ. Astron. Soc. Pac. 91, 712 (1979).
    [CrossRef]
  14. H. Wolter, Ann. Phys. (Leipzig) 10, 94 (1952).
  15. H. Wolter, Ann. Phys. (Leipzig) 10, 286 (1952).
  16. R. F. Malina, W. Cash, Appl. Opt. 17, 3309 (1978).
    [CrossRef] [PubMed]
  17. O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. (USSR) 22, 66 (1967) [Opt. Spektrosk. 22, 127 (1967)].
  18. W. Cash, S. Bowyer, M. Lampton, Astrophys. J. 221, L87 (1978).
    [CrossRef]

1981

1979

P. Vincent, M. Neviere, D. Maystre, Appl. Opt. 18, 1780 (1979).
[CrossRef] [PubMed]

R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).

W. McClintock, Publ. Astron. Soc. Pac. 91, 712 (1979).
[CrossRef]

1978

1977

W. Werner, Appl. Opt. 16, 2078 (1977).
[CrossRef] [PubMed]

M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).

1967

D. J. Schroeder, Appl. Opt. 6, 1981 (1967).
[CrossRef]

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. (USSR) 22, 66 (1967) [Opt. Spektrosk. 22, 127 (1967)].

1952

H. Wolter, Ann. Phys. (Leipzig) 10, 94 (1952).

H. Wolter, Ann. Phys. (Leipzig) 10, 286 (1952).

Boggess, A.

A. Boggess et al., Nature London 275, 372 (1978).
[CrossRef]

Bowyer, S.

R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).

W. Cash, S. Bowyer, M. Lampton, Astrophys. J. 221, L87 (1978).
[CrossRef]

M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).

Brytov, I. A.

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. (USSR) 22, 66 (1967) [Opt. Spektrosk. 22, 127 (1967)].

Cash, W.

R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).

W. Cash, S. Bowyer, M. Lampton, Astrophys. J. 221, L87 (1978).
[CrossRef]

R. F. Malina, W. Cash, Appl. Opt. 17, 3309 (1978).
[CrossRef] [PubMed]

M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).

W. Cash, R. Kohnert, in preparation (1981).

Ershov, O. A.

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. (USSR) 22, 66 (1967) [Opt. Spektrosk. 22, 127 (1967)].

Finley, D.

R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).

Hunter, W. R.

Kohnert, R.

W. Cash, R. Kohnert, in preparation (1981).

Lampton, M.

W. Cash, S. Bowyer, M. Lampton, Astrophys. J. 221, L87 (1978).
[CrossRef]

M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).

Lukirskii, A. P.

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. (USSR) 22, 66 (1967) [Opt. Spektrosk. 22, 127 (1967)].

Malina, R. F.

R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).

R. F. Malina, W. Cash, Appl. Opt. 17, 3309 (1978).
[CrossRef] [PubMed]

M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).

Maystre, D.

McClintock, W.

W. McClintock, Publ. Astron. Soc. Pac. 91, 712 (1979).
[CrossRef]

Neviere, M.

Rense, W. A.

W. A. Rense, Space Science Reviews, Vol. 5, C. deJager, Ed. (Reidel Publishing Co., Dordrecht, Holland, 1966), p. 234.
[CrossRef]

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Schroeder, D. J.

Vincent, P.

Visser, H.

Werner, W.

Wolter, H.

H. Wolter, Ann. Phys. (Leipzig) 10, 286 (1952).

H. Wolter, Ann. Phys. (Leipzig) 10, 94 (1952).

Ann. Phys. (Leipzig)

H. Wolter, Ann. Phys. (Leipzig) 10, 94 (1952).

H. Wolter, Ann. Phys. (Leipzig) 10, 286 (1952).

Appl. Opt.

Astrophys. J.

W. Cash, S. Bowyer, M. Lampton, Astrophys. J. 221, L87 (1978).
[CrossRef]

J. Opt. Soc. Am.

Nature London

A. Boggess et al., Nature London 275, 372 (1978).
[CrossRef]

Opt. Spectrosc. (USSR)

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. (USSR) 22, 66 (1967) [Opt. Spektrosk. 22, 127 (1967)].

Proc. Soc. Photo-Opt. Instrum. Eng.

M. Lampton, W. Cash, R. F. Malina, S. Bowyer, Proc. Soc. Photo-Opt. Instrum. Eng. 106, 93 (1977).

R. F. Malina, S. Bowyer, D. Finley, W. Cash, Proc. Soc. Photo-Opt. Instrum. Eng. 184, 30 (1979).

Publ. Astron. Soc. Pac.

W. McClintock, Publ. Astron. Soc. Pac. 91, 712 (1979).
[CrossRef]

Other

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

W. Cash, R. Kohnert, in preparation (1981).

W. A. Rense, Space Science Reviews, Vol. 5, C. deJager, Ed. (Reidel Publishing Co., Dordrecht, Holland, 1966), p. 234.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematics of the (upper) conventional and (lower) grazing incidence echelle spectrographs are shown. The systems have the same series of components, the latter has been stretched out so that all grazing incidence components can be used.

Fig. 2
Fig. 2

Notation for the geometry of conical diffraction is shown. Spherical coordinates are used with the poles defined by the direction of the rulings. The half-angle of the cone of diffraction γ is defined by the angle between the incoming ray and the rulings. As such it is the altitude of the coordinate system. The azimuth is given by α and β. Light is diffracted through an azimuthal angle.

Fig. 3
Fig. 3

Measured efficiency of a MgF2 overcoated echelle grating is shown as a function of graze angle at 1048 Å. Peak efficiencies of orders 7–32 are shown. The first six orders were not measured because of geometrical constraints on the system. The grating has excellent performance at grazing incidence and poor performance at normal incidence.

Fig. 4
Fig. 4

Geometry of conical diffraction nomogram is shown. Horizontal distance between zero-order and diffracted light has value nλ/d.

Fig. 5
Fig. 5

Nomogram reconfigured to measure wavelength on the blaze.

Fig. 6
Fig. 6

Nomogram configured to measure wavelength on the blaze when α is not necessarily equal to β.

Fig. 7
Fig. 7

Effective distortion from nonspecular reflection is shown for the case of a square slit at conical diffraction.

Fig. 8
Fig. 8

In conical diffraction a circular beam is distorted into an ellipse.

Fig. 9
Fig. 9

Distorted beam leaving the echelle is shown entering the aperture of a type II telescope. Only about one-third of the circumference of the telescope is needed.

Fig. 10
Fig. 10

Efficiencies of typical echelle spectrographs are shown as a function of wavelength. The first (far UV) is for optical and UV wavelengths using conventional optics. The second (EUV) uses all grazing optics with angles of ~10°. The third (x ray) uses graze angles of 2°.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( n λ ) / d = sin γ ( sin α + sin β ) ,
α + β = 2 ψ ,
α = ψ .
α = β = ψ .
tan ρ = 2 tan β cos γ ,
tan ρ = cos γ ( sin α + sin β ) cos β .
tan ρ cos α + tan κ cos β = cos γ ( sin α + sin β ) cos α cos β .
tan κ = cos γ ( sin α + sin β ) cos α .
tan 2 θ = 2 / ( tan ρ ) .
D = D [ 1 ± 2 cos 2 θ + 2 ( 1 ± cos 2 θ ) cot 2 2 θ ] 1 / 2 cos α / cos β .
λ δ λ = sin α + sin β cos β δ β 2 tan β δ β .
R = λ δ λ = 2 tan β sin γ δ B .
A ( λ ) = π D 2 / 4 × G × P ( γ , λ ) × C ( γ , λ ) × X ( γ , λ ) × E ( γ , λ ) × M ( γ , λ ) .
A ( λ ) = π D 2 / 4 × G × [ R ( γ , λ ) ] 8 × e 2
W = λ d cos β
W = 2 sin γ tan β n .

Metrics