Abstract

In single-mode optical fiber interferometer sensors environmental effects such as ambient temperature fluctuations and static pressure changes result in signal fading. Three different optical techniques which eliminate the signal fading problem are presented and experimentally verified. Comparison of the three techniques in terms of their technical merits is presented.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1979); J. A. Bucaro, J. H. Cole, J. Jarzynski, W. K. Burns, T. G. Giallorenzi, “Optical Fiber Sensor Development,” in Physics of Fiber Optics (American Chemical Society, Washington, D.C., 1981), pp 493–514.
    [CrossRef]
  2. D. A. Jackson, A. Dandridge, S. K. Sheem, Opt. Lett. 5, 139 (1980).
    [CrossRef] [PubMed]
  3. A. Yariv, H. V. Winsor, Opt. Lett. 5, 87 (1980).
    [CrossRef] [PubMed]
  4. A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, Electron. Lett. 16, 409 (1980).
    [CrossRef]
  5. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, Appl. Opt. 19, 2926 (1980).
    [CrossRef] [PubMed]
  6. S. K. Sheem, J. Appl. Phys. 52, 3865 (1981).
    [CrossRef]
  7. R. Hughes, R. Priest, Appl. Opt. 19, 1477 (1980).
    [CrossRef] [PubMed]
  8. G. B. Hocker, Appl. Opt. 18, 1445 (1979).
    [CrossRef] [PubMed]
  9. S. K. Sheem, R. P. Moeller, J. Appl. Phys. 51, 4050 (1980).
    [CrossRef]
  10. Actually π/2 in the equation should be replaced by (½ + N) to make the discussion more general. However, the extension is obvious, and for the sake of simplicity we consider here only the case of N = 0.
  11. S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
    [CrossRef] [PubMed]
  12. S. K. Sheem, H. F. Taylor, R. P. Moeller, W. K. Burns, Appl. Opt. 20, 1056 (1981).
    [CrossRef] [PubMed]
  13. D. C. Tran, K. Koo, S. K. Sheem, IEEE J. Quantum Electron. QE-17, 981 (1981).
  14. S. K. Sheem, Appl. Phys. Lett. 37, 869 (1980).
    [CrossRef]

1981

S. K. Sheem, J. Appl. Phys. 52, 3865 (1981).
[CrossRef]

S. K. Sheem, H. F. Taylor, R. P. Moeller, W. K. Burns, Appl. Opt. 20, 1056 (1981).
[CrossRef] [PubMed]

D. C. Tran, K. Koo, S. K. Sheem, IEEE J. Quantum Electron. QE-17, 981 (1981).

1980

1979

S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
[CrossRef] [PubMed]

G. B. Hocker, Appl. Opt. 18, 1445 (1979).
[CrossRef] [PubMed]

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1979); J. A. Bucaro, J. H. Cole, J. Jarzynski, W. K. Burns, T. G. Giallorenzi, “Optical Fiber Sensor Development,” in Physics of Fiber Optics (American Chemical Society, Washington, D.C., 1981), pp 493–514.
[CrossRef]

Burns, W. K.

Dandridge, A.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, Electron. Lett. 16, 409 (1980).
[CrossRef]

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1979); J. A. Bucaro, J. H. Cole, J. Jarzynski, W. K. Burns, T. G. Giallorenzi, “Optical Fiber Sensor Development,” in Physics of Fiber Optics (American Chemical Society, Washington, D.C., 1981), pp 493–514.
[CrossRef]

S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
[CrossRef] [PubMed]

Hocker, G. B.

Hughes, R.

Jackson, D. A.

Koo, K.

D. C. Tran, K. Koo, S. K. Sheem, IEEE J. Quantum Electron. QE-17, 981 (1981).

Moeller, R. P.

Priest, R.

Sheem, S. K.

D. C. Tran, K. Koo, S. K. Sheem, IEEE J. Quantum Electron. QE-17, 981 (1981).

S. K. Sheem, H. F. Taylor, R. P. Moeller, W. K. Burns, Appl. Opt. 20, 1056 (1981).
[CrossRef] [PubMed]

S. K. Sheem, J. Appl. Phys. 52, 3865 (1981).
[CrossRef]

D. A. Jackson, A. Dandridge, S. K. Sheem, Opt. Lett. 5, 139 (1980).
[CrossRef] [PubMed]

S. K. Sheem, Appl. Phys. Lett. 37, 869 (1980).
[CrossRef]

S. K. Sheem, R. P. Moeller, J. Appl. Phys. 51, 4050 (1980).
[CrossRef]

S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
[CrossRef] [PubMed]

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1979); J. A. Bucaro, J. H. Cole, J. Jarzynski, W. K. Burns, T. G. Giallorenzi, “Optical Fiber Sensor Development,” in Physics of Fiber Optics (American Chemical Society, Washington, D.C., 1981), pp 493–514.
[CrossRef]

Sigel, G. H.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, Electron. Lett. 16, 409 (1980).
[CrossRef]

Taylor, H. F.

Tran, D. C.

D. C. Tran, K. Koo, S. K. Sheem, IEEE J. Quantum Electron. QE-17, 981 (1981).

Tveten, A. B.

D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, Appl. Opt. 19, 2926 (1980).
[CrossRef] [PubMed]

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, Electron. Lett. 16, 409 (1980).
[CrossRef]

West, E. J.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, Electron. Lett. 16, 409 (1980).
[CrossRef]

Winsor, H. V.

Yariv, A.

Appl. Opt.

Appl. Phys. Lett.

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1979); J. A. Bucaro, J. H. Cole, J. Jarzynski, W. K. Burns, T. G. Giallorenzi, “Optical Fiber Sensor Development,” in Physics of Fiber Optics (American Chemical Society, Washington, D.C., 1981), pp 493–514.
[CrossRef]

S. K. Sheem, Appl. Phys. Lett. 37, 869 (1980).
[CrossRef]

Electron. Lett.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, Electron. Lett. 16, 409 (1980).
[CrossRef]

IEEE J. Quantum Electron.

D. C. Tran, K. Koo, S. K. Sheem, IEEE J. Quantum Electron. QE-17, 981 (1981).

J. Appl. Phys.

S. K. Sheem, J. Appl. Phys. 52, 3865 (1981).
[CrossRef]

S. K. Sheem, R. P. Moeller, J. Appl. Phys. 51, 4050 (1980).
[CrossRef]

Opt. Lett.

Other

Actually π/2 in the equation should be replaced by (½ + N) to make the discussion more general. However, the extension is obvious, and for the sake of simplicity we consider here only the case of N = 0.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a single-mode fiber Mach-Zehnder interferometer.

Fig. 2
Fig. 2

Schematic of a single-mode fiber interferometer using a 3 × 3 directional coupler as the second beam splitter.12

Fig. 3
Fig. 3

Magnitudes of B (i = 1,2,3), the constants in Eqs. (16) and (17) vs KL.

Fig. 4
Fig. 4

Schematic of interferometer using two wavelengths (TWI): (A) laser; (B) halfwave plate; (C) focusing lens (D) input coupler13,14; (E) output coupler; (F) collimating lens; (G) Glan-Thomson; (H,J) detectors; (K) oscilloscope.

Fig. 5
Fig. 5

Outputs at polarization (P1) and polarization ( P 1 ) which are π/2 out of phase, making a combination of sinξ and cosξ. The small signal outputs (ΔP1 and Δ P 1 at the higher frequency) are shown to be fading out at the zero slope points. The arrows are explained in Fig. 6.

Fig. 6
Fig. 6

Small signal outputs ΔP1, Δ P 1 and their sum ( Δ P 1 + Δ P 1 ). The sum is seen to vanish where P1 and P2 are out of phase (the points of arrows in Figs. 5 and 6).

Fig. 7
Fig. 7

The max(|ΔP1|,|ΔP1|) does not vanish while ΔP1 and Δ P 1 themselves vanish alternatively.

Fig. 8
Fig. 8

Small signal outputs ΔPII and ΔPIII when PIPIIPIII in the interferometer shown in Fig. 2. In this case the interferometer is similar to that shown in Fig. 1 in a sense that PII + PIII = constant or dPII/ ≃ −dPII/. In such a case the signals ΔPII and ΔPIII are at maxima (a) or at minima (b) simultaneously, resulting in momentary signal fading (b).

Fig. 9
Fig. 9

(a) Small signal outputs ΔPII and ΔPIII when PI is comparable with PII and PIII: (b) they do not fade simultaneously; (c) max(ΔPII, ΔPIII) does not vanish at any moment.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

P 1 = ½ ( 1 + cos ξ ) ,
P 2 = ½ ( 1 - cos ξ ) ,
ξ = - 2 π S n eff ( λ ) / λ ,
Δ P = - ½ Δ ξ sin ξ .
Δ P 1 = A Δ ξ sin ξ ,
Δ P 1 = A Δ ξ cos ξ ,
Δ P = Δ P 1 + Δ P 1 = ( sin ξ + cos ξ ) A Δ ξ .
Δ P / ( P 1 + P 1 ) = Δ ξ .
Δ P = ( Δ P 1 2 + Δ P 1 - 2 ) 1 / 2 = A Δ ξ .
P = max ( Δ P 1 , Δ P 1 ) .
ξ ( λ 1 ) - ξ ( λ 2 ) = π / 2 ,
P 1 = P 1 ( λ 1 ) = ½ ( 1 + cos ξ ) ,
P 1 = P 1 ( λ 2 ) = ½ ( 1 + sin ξ ) ,
L p = λ / ( n 1 - n 2 ) .
ξ ( p ) - ξ ( s ) = - 2 π S ( n 1 - n 2 ) / λ = π / 2 ,
S = L p / 4.
P I = - 2 B 2 ( 1 + cos ξ ) ,
P II , III = B 1 + B 2 cos ξ ± B 3 sin ξ ,
P II , III = P II ± P III = 2 ( B 1 + B 2 cos ξ ) 2 B 3 sin ξ .
d P II / d ξ = d P III / d ξ = 0.

Metrics