Abstract

The control of time-dependent temperature distribution of a dynamic high temperature IR target critically affects its radiance distribution. Two methods of controlling the target temperature through appropriate power generation and deposition are discussed. The application of the thermal analysis to a resolved, unresolved, and striped high temperature dynamic target is shown.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Friday, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).
  2. R. E. Sampson, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).
  3. J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).
  4. M. S. Scholl, W. L. Wolfe, Appl. Opt. 20, 2143 (1981).
    [CrossRef] [PubMed]
  5. M. S. Scholl, “Errors in Radiance Simulation and Scene Discrimination,” to be published.
  6. E. U. Condon, H. Odishaw, Eds., Handbook of Physics (McGraw-Hill, New York, 1967).
  7. J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.
  8. “Radiation Theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (ERIM, Ann Arbor, Mich., 1978), Chap. 1.
  9. P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  10. P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).
  11. M. S. Scholl, “Measured Performance of the Glassy Carbon Infrared Target,” to be submitted to Applied Optics.

1981

1980

E. C. Friday, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).

R. E. Sampson, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).

J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).

Bleha, W. P.

J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).

Corson, D. R.

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

Efron, U.

J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).

Feshback, H.

P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

Friday, E. C.

E. C. Friday, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).

Grinberg, J.

J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).

Grube, R. H.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.

Jamieson, J. A.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.

Little, M. J.

J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).

Lorrain, P.

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

McFee, R. H.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.

Morse, P. M.

P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

Plass, G. N.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.

Richards, R. G.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.

Sampson, R. E.

R. E. Sampson, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).

Scholl, M. S.

M. S. Scholl, W. L. Wolfe, Appl. Opt. 20, 2143 (1981).
[CrossRef] [PubMed]

M. S. Scholl, “Errors in Radiance Simulation and Scene Discrimination,” to be published.

M. S. Scholl, “Measured Performance of the Glassy Carbon Infrared Target,” to be submitted to Applied Optics.

Wolfe, W. L.

Appl. Opt.

Proc. Soc. Photo-Opt. Instrum. Eng.

E. C. Friday, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).

R. E. Sampson, Proc. Soc. Photo-Opt. Instrum. Eng. 219, 000 (1980).

J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 000 (1980).

Other

M. S. Scholl, “Errors in Radiance Simulation and Scene Discrimination,” to be published.

E. U. Condon, H. Odishaw, Eds., Handbook of Physics (McGraw-Hill, New York, 1967).

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, New York, 1963), Chap. 2.

“Radiation Theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (ERIM, Ann Arbor, Mich., 1978), Chap. 1.

P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

M. S. Scholl, “Measured Performance of the Glassy Carbon Infrared Target,” to be submitted to Applied Optics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Setup needed to heat the graphite target: stripes are heated resistively; the hot spot is heated with the laser.

Fig. 2
Fig. 2

Glassy carbon waffle target.

Fig. 3
Fig. 3

Power density due to conductive losses as a function of stripe half-length.

Fig. 4
Fig. 4

Temperature of a stripe as a function of its length.

Fig. 5
Fig. 5

Stripe geometry in the coordinate system.

Fig. 6
Fig. 6

Portion of the stripe at distance x of width dx at a uniform temperature T.

Fig. 7
Fig. 7

Power lost from stripes as a function of temperature.

Fig. 8
Fig. 8

Current needed to heat the stripe as a function of temperature.

Fig. 9
Fig. 9

Voltage across the stripes as a function of temperature.

Fig. 10
Fig. 10

Temperature as a function of time for the graphite targets for power density of 1 W/mm2 (1-mm base, 2-mm column, 1-mm2 matrix elements, 11-mm wide stripe, 1-mm hot spot, pL = 1 W/mm2).

Fig. 11
Fig. 11

Temperature as a function of time for the graphite targets for 110 K/sec heating rate (1-mm base, 2-mm column, 1-mm2 matrix elements, 11-mm wide stripe, 1-mm hot spot, 110 K/sec heating rate).

Fig. 12
Fig. 12

Power density on the hot spot as a function of time (1-mm base, 2-mm column, 1-mm2 matrix elements, 11-mm stripe, 1-mm hot spot).

Fig. 13
Fig. 13

Temperature as a function of distance from the hot spot at t = 2 sec (1-mm base, 2-mm column, 1-mm2 matrix elements, 11-mm wide stripe, 1-mm hot spot).

Fig. 14
Fig. 14

Temperature as a function of distance from the hot spot at t = 10 sec (1-mm base, 2-mm column, 1-mm2 matrix elements, 11-mm wide stripes, 1-mm hot spot).

Fig. 15
Fig. 15

Temperature of a glassy carbon stripe as a function of distance at t = 2 sec (1-mm2 matrix elements, 11-mm wide stripe, 1-mm hot spot).

Fig. 16
Fig. 16

Temperature of a glassy carbon stripe as a function of distance at t = 10 see (1-mm2 matrix elements, 11-mm wide stripe, 1-mm hot spot).

Fig. 17
Fig. 17

Prototype dynamic IR target with glassy carbon waffle stripes.

Fig. 18
Fig. 18

Resolved and unresolved high temperature IR target.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k 2 T x 2 = d c T t + p T ,
p c = 8 k ( T 2 - T 1 ) L x 2 ,
P c = 8 k ( T 2 - T 1 ) a L x ,
T ( x ) = T 1 + ( T 2 - T 1 ) ( 2 x L x ) 2 .
d P R ( x ) = 2 σ [ T ( x ) 4 - T B 4 ] ( L y + L z ) d x ,
P R = 2 σ ( L y + L z ) L x [ T 1 4 + 4 3 T 1 3 ( T 2 - T 1 ) + 5 6 T 1 2 ( T 2 - T 1 ) 2 + 4 7 T 1 ( T 2 - T 1 ) 3 + 1 8 ( T 2 - T 1 ) 4 - T B 4 ] .
P T = 8 k ( T 2 - T 1 ) a L x + 2 σ ( L y + L z ) L x × [ T 1 4 + 4 3 T 1 3 ( T 2 - T 1 ) + 5 6 T 1 2 ( T 2 - T 1 ) 2 + 4 7 T 1 ( T 2 - T 1 ) 3 + 1 8 ( T 2 - T 1 ) 4 - T B 4 ] .
R = ρ L x L b L y .
I = P T L b L y ρ L x .
V = R I = ρ P T L x L y L b .
c d T ( x , y , z , t ) t = [ k · T ( x , y , z , t ) ] - p ( x , y , z , t ) ,
p ( s , t ) h = σ [ T ( S , t ) 4 - T B 4 ]             T ( x , y , z , 0 ) = T 0 ,

Metrics