Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Layer, Surf. Sci. 16, 177 (1969).
    [CrossRef]
  2. R. H. Muller, Surf. Sci. 56, 19 (1976).
    [CrossRef]
  3. P. S. Hauge, Surf. Sci. 98, 108 (1980).
    [CrossRef]
  4. H. Rozen, J. Shamir, J. Phys. E. 11, 905 (1978).
    [CrossRef]
  5. M. Halmos, J. Shamir, “Effect of mirror anisotropy on Zeeman lasers,” Optik (Stuttgert)1982 (to be published).
  6. H. DeLang, “Polarization properties of optical resonators, passive and active,” Philips Res. Rept. Suppl. 8, (1967).
  7. E. I. Gordon, Proc. IEEE 54, 1391 (1966).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York1970).

1980 (1)

P. S. Hauge, Surf. Sci. 98, 108 (1980).
[CrossRef]

1978 (1)

H. Rozen, J. Shamir, J. Phys. E. 11, 905 (1978).
[CrossRef]

1976 (1)

R. H. Muller, Surf. Sci. 56, 19 (1976).
[CrossRef]

1969 (1)

H. P. Layer, Surf. Sci. 16, 177 (1969).
[CrossRef]

1967 (1)

H. DeLang, “Polarization properties of optical resonators, passive and active,” Philips Res. Rept. Suppl. 8, (1967).

1966 (1)

E. I. Gordon, Proc. IEEE 54, 1391 (1966).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York1970).

DeLang, H.

H. DeLang, “Polarization properties of optical resonators, passive and active,” Philips Res. Rept. Suppl. 8, (1967).

Gordon, E. I.

E. I. Gordon, Proc. IEEE 54, 1391 (1966).
[CrossRef]

Halmos, M.

M. Halmos, J. Shamir, “Effect of mirror anisotropy on Zeeman lasers,” Optik (Stuttgert)1982 (to be published).

Hauge, P. S.

P. S. Hauge, Surf. Sci. 98, 108 (1980).
[CrossRef]

Layer, H. P.

H. P. Layer, Surf. Sci. 16, 177 (1969).
[CrossRef]

Muller, R. H.

R. H. Muller, Surf. Sci. 56, 19 (1976).
[CrossRef]

Rozen, H.

H. Rozen, J. Shamir, J. Phys. E. 11, 905 (1978).
[CrossRef]

Shamir, J.

H. Rozen, J. Shamir, J. Phys. E. 11, 905 (1978).
[CrossRef]

M. Halmos, J. Shamir, “Effect of mirror anisotropy on Zeeman lasers,” Optik (Stuttgert)1982 (to be published).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York1970).

J. Phys. E. (1)

H. Rozen, J. Shamir, J. Phys. E. 11, 905 (1978).
[CrossRef]

Philips Res. Rept. Suppl. (1)

H. DeLang, “Polarization properties of optical resonators, passive and active,” Philips Res. Rept. Suppl. 8, (1967).

Proc. IEEE (1)

E. I. Gordon, Proc. IEEE 54, 1391 (1966).
[CrossRef]

Surf. Sci. (3)

H. P. Layer, Surf. Sci. 16, 177 (1969).
[CrossRef]

R. H. Muller, Surf. Sci. 56, 19 (1976).
[CrossRef]

P. S. Hauge, Surf. Sci. 98, 108 (1980).
[CrossRef]

Other (2)

M. Halmos, J. Shamir, “Effect of mirror anisotropy on Zeeman lasers,” Optik (Stuttgert)1982 (to be published).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup: AO, acoustooptic modulator; M, mirors; P, polarizers; QW, quarterwave plates; BS, beam splitters; and D, detector.

Fig. 2
Fig. 2

Amplitude rotation ellipse for imperfect phase plates.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E r x = E 0 cos ω r t             E r y = - E 0 sin ω r t ,
E l x = E 0 cos ( ω l t + ϕ ) ,             E l y = E 0 sin ( ω l t + ϕ ) ,
E x = E 0 [ cos ω r t + cos ( ω l t + ϕ ) ] = 2 E 0 cos ( ω l - ω r ) t + ϕ 2 cos ( ω l + ω r ) t + ϕ 2 , E y = E 0 [ - sin ω r t + sin ( ω l t + ϕ ) ] = 2 E 0 sin ( ω l - ω r ) t + ϕ 2 cos ( ω l + ω r ) t + ϕ 2 .
E x = 2 E 0 cos α cos ( ω l - ω r ) t + ϕ 2 cos ( ω l + ω r ) t + ϕ 2 , E y = 2 E 0 sin α cos [ ( ω l - ω r ) t + ϕ 2 - δ ] cos ( ω l + ω r ) t + ϕ 2 ,
tan 2 ψ = ( tan 2 α ) sin δ ,
sin 2 χ = ( sin 2 α ) sin δ ,
tan χ = ± b / a ,

Metrics