Abstract

A method of measuring the stresses, residual or applied, in an optical fiber or preform is presented. It is shown that the stress profiles can be obtained from the Abel transform of the derivative of the retardation. The axial stress profile is shown to bear the same shape as the refractive-index profile. Measurement results indicate that the applied tension during the fiber drawing process is frozen into the fiber, consequently affecting the intrinsic strength of the fiber. The method of estimating the fiber drawing tension from the fiber stress profile is also given.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Scherer, Appl. Opt. 19, 2000 (1980).
    [CrossRef] [PubMed]
  2. M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
    [CrossRef]
  3. K. Nagano, S. Kawakami, S. Nishida, Appl. Opt. 17, 2080 (1978).
    [CrossRef] [PubMed]
  4. N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
    [CrossRef]
  5. N. Lagakos, R. Mohr, O. H. El-Bayoumi, Appl. Opt. 13, 2309, (1981).
    [CrossRef]
  6. H. Poritsky, Physics N.Y., 5, 406 (1934).
  7. K. Brugger, Appl. Opt. 10, 437 (1971).
    [CrossRef] [PubMed]
  8. D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
    [CrossRef]
  9. G. W. Scherer, J. Non-Cryst. Solids 34, 223 (1979).
    [CrossRef]
  10. G. W. Scherer, J. Non-Cryst. Solids 38, 39, 201 (1980).
    [CrossRef]
  11. G. W. Scherer, A. R. Cooper, J. Am. Ceram. Soc. 63, 346 (1980).
    [CrossRef]
  12. U. C. Paek, C. R. Kurkjian, J. Am. Ceram. Soc. 58, 330 (1975).
    [CrossRef]
  13. L. Rongved, C. R. Kurkjian, F. T. Geyling, J. Non-Cryst. Solids 42, 579 (1980).
    [CrossRef]
  14. R. C. O’Rourke, A. W. Saenz, Q. Appl. Math. 8, 303 (1950).
  15. P. M. Sutton, J. Am. Ceram. Soc. 41, 103 (1958).
    [CrossRef]
  16. P. L. Chu, Electron. Lett. 13, 736 (1977).
    [CrossRef]

1981 (1)

N. Lagakos, R. Mohr, O. H. El-Bayoumi, Appl. Opt. 13, 2309, (1981).
[CrossRef]

1980 (4)

G. W. Scherer, Appl. Opt. 19, 2000 (1980).
[CrossRef] [PubMed]

G. W. Scherer, J. Non-Cryst. Solids 38, 39, 201 (1980).
[CrossRef]

G. W. Scherer, A. R. Cooper, J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

L. Rongved, C. R. Kurkjian, F. T. Geyling, J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

1979 (2)

G. W. Scherer, J. Non-Cryst. Solids 34, 223 (1979).
[CrossRef]

N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
[CrossRef]

1978 (1)

1977 (1)

P. L. Chu, Electron. Lett. 13, 736 (1977).
[CrossRef]

1976 (1)

M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
[CrossRef]

1975 (1)

U. C. Paek, C. R. Kurkjian, J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

1971 (1)

1969 (1)

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

1958 (1)

P. M. Sutton, J. Am. Ceram. Soc. 41, 103 (1958).
[CrossRef]

1950 (1)

R. C. O’Rourke, A. W. Saenz, Q. Appl. Math. 8, 303 (1950).

1934 (1)

H. Poritsky, Physics N.Y., 5, 406 (1934).

Brugger, K.

Chu, P. L.

P. L. Chu, Electron. Lett. 13, 736 (1977).
[CrossRef]

Cooper, A. R.

G. W. Scherer, A. R. Cooper, J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

Edahiro, T.

N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
[CrossRef]

El-Bayoumi, O. H.

N. Lagakos, R. Mohr, O. H. El-Bayoumi, Appl. Opt. 13, 2309, (1981).
[CrossRef]

Geyling, F. T.

L. Rongved, C. R. Kurkjian, F. T. Geyling, J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

Jinguiji, K.

N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
[CrossRef]

Kawachi, M.

N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
[CrossRef]

Kawakami, S.

Krohn, D. A.

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

Kurkjian, C. R.

L. Rongved, C. R. Kurkjian, F. T. Geyling, J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

U. C. Paek, C. R. Kurkjian, J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

Lagakos, N.

N. Lagakos, R. Mohr, O. H. El-Bayoumi, Appl. Opt. 13, 2309, (1981).
[CrossRef]

Mohr, R.

N. Lagakos, R. Mohr, O. H. El-Bayoumi, Appl. Opt. 13, 2309, (1981).
[CrossRef]

Nagano, K.

Nishida, S.

O’Rourke, R. C.

R. C. O’Rourke, A. W. Saenz, Q. Appl. Math. 8, 303 (1950).

Paek, U. C.

U. C. Paek, C. R. Kurkjian, J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

Poritsky, H.

H. Poritsky, Physics N.Y., 5, 406 (1934).

Rongved, L.

L. Rongved, C. R. Kurkjian, F. T. Geyling, J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

Saenz, A. W.

R. C. O’Rourke, A. W. Saenz, Q. Appl. Math. 8, 303 (1950).

Saunders, M. J.

M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
[CrossRef]

Scherer, G. W.

G. W. Scherer, Appl. Opt. 19, 2000 (1980).
[CrossRef] [PubMed]

G. W. Scherer, J. Non-Cryst. Solids 38, 39, 201 (1980).
[CrossRef]

G. W. Scherer, A. R. Cooper, J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

G. W. Scherer, J. Non-Cryst. Solids 34, 223 (1979).
[CrossRef]

Shibata, N.

N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
[CrossRef]

Sutton, P. M.

P. M. Sutton, J. Am. Ceram. Soc. 41, 103 (1958).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (1)

P. L. Chu, Electron. Lett. 13, 736 (1977).
[CrossRef]

J. Am. Ceram. Soc. (4)

P. M. Sutton, J. Am. Ceram. Soc. 41, 103 (1958).
[CrossRef]

G. W. Scherer, A. R. Cooper, J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

U. C. Paek, C. R. Kurkjian, J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

J. Non-Cryst. Solids (3)

G. W. Scherer, J. Non-Cryst. Solids 34, 223 (1979).
[CrossRef]

G. W. Scherer, J. Non-Cryst. Solids 38, 39, 201 (1980).
[CrossRef]

L. Rongved, C. R. Kurkjian, F. T. Geyling, J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Shibata, K. Jinguiji, M. Kawachi, T. Edahiro, Jpn. J. Appl. Phys. 18, 1267 (1979).
[CrossRef]

Physics N.Y. (1)

H. Poritsky, Physics N.Y., 5, 406 (1934).

Q. Appl. Math. (1)

R. C. O’Rourke, A. W. Saenz, Q. Appl. Math. 8, 303 (1950).

Rev. Sci. Instrum. (1)

M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Ray trajectory.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Stress and index profiles of phosphor doped preform.

Fig. 4
Fig. 4

Stress and index profiles of germanium and boron doped preform.

Fig. 5
Fig. 5

Stress and index profiles of fiber drawn from preform of Fig. 4.

Fig. 6
Fig. 6

Comparison of axial stress profiles of preform and fiber.

Fig. 7
Fig. 7

Transformation of compressive stress to tensile stress from preform stage to fiber stage.

Fig. 8
Fig. 8

Fiber stress profile when a tensile load is applied.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R ( y ) = C b 2 y 2 b s y 2 ( σ z σ y ) d x ,
b 2 y 2 b 2 y 2  σ y d x = 0.
R ( y ) = C b 2 y 2 b 2 y 2 σ z d x .
R ( y ) = 2 C y b σ z ( r ) r d r r 2 −  y 2
σ z ( r ) = 1 π C r b d R ( y ) / d y y 2 −  r 2 d y .
Δ σ z = Δ R C π Δ r ( Δ r / r ) ln ( 2 r / Δ r ) ,
0 b r σ z ( r ) d r = 0.
T = A 2 [ σ z 1 p σ z 2 p ( σ z 1 f σ z 2 f ) ]  ,
T = ( σ z 2 f σ z 2 p ) ( A 1 + A 2 ) A 2 / A 1 .
T 1 = 2 π 0 b r σ z ( r ) d r .
σ z ( r ) = 1 π C 1 r d d r 0 b R ( y ) d y y 2 r 2 .
C = 2 T 1 0 b R ( y ) d y y 2 r 2 .

Metrics