Abstract

The use of two-line atomic fluorescence (TLF) as a diagnostic tool in combustion research offers a number of advantages over other temperature measurement techniques. The most important is its potential to take data at rates high enough (10 kHz) to follow turbulent flow. An experimental investigation of the feasibility of constructing a TLF system with these capabilities has been carried out. To meet the high data rate requirements, dye-laser excitation sources and a computer data acquisition system were incorporated in a system that utilized the 410- and 451-nm transitions of indium seeded into a flat-flame methane burner. Preliminary one-shot results exhibited a precision of ~13% and 350 K accuracy and served to allow the identification of the major sources of experimental error associated with a TLF system of this type. Recommendations are made for eliminating these error sources, and it is expected that at high data rates precision and accuracy of better than 2% can be attained.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription