Abstract

General formulations are given for the multiple scattering of a polarized wave incident upon a slab of randomly distributed spherical particles. The radiative transfer equation with Stokes vectors is decomposed into Fourier components, and they are shown for linearly and circularly polarized incident wave. For linear polarization, the copolarized and cross-polarized incoherent intensities show sinusoidal variations with the azimuthal angle. The degree of polarization is also calculated for various directions and optical thickness. The calculations are made for optical waves at 5, 10, and 15 μm in fog and compared with the first-order scattering calculations.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription