Abstract

A technique is proposed and demonstrated for measuring combustion temperatures using two-line laser-saturated fluorescence. The rotational temperature of OH is determined by saturating two different rotational transitions in the (0,0) band of the A2+X2Π electronic system and detecting fluorescence emission which originates from the laser-pumped upper rotational levels. Temperature is calculated from the ratio of the fluorescence intensities for the two different excitation–emission pairs. The method is demonstrated by measuring temperature profiles in subatmospheric H2/O2/Ar flat flames. Temperatures measured by two-line saturated fluorescence are compared with temperatures measured by coated thermocouples and OH absorption and with predictions from an elementary chemical kinetics code. The temperatures measured by the two-line fluorescence technique are accurate to 3–5% and exhibit low random error.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Cattolica, “OH Rotational Temperature from Laser Induced Fluorescence,” Western States Section Spring Meeting, The Combustion Institute, Boulder, Colo. (Apr.1978).
  2. J. H. Bechtel, Appl. Opt. 18, 2100 (1979).
    [CrossRef] [PubMed]
  3. C. C. Wang, L. I. Davis, Appl. Phys. Lett. 25, 34 (1974).
    [CrossRef]
  4. D. R. Crosley, G. P. Smith, Combust. Flame 44, 27 (1982).
    [CrossRef]
  5. W. R. Anderson, “Laser Excited Fluorescence Measurement of OH Rotational Temperatures in a CH4/N2O Flame,” Eastern Section Meeting, The Combustion Institute, Atlanta (Nov. 1979).
  6. W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” to appear in Combust. Flame.
  7. C. Chan, J. W. Daily, Appl. Opt. 19, 1963 (1980).
    [CrossRef] [PubMed]
  8. D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980).
    [CrossRef] [PubMed]
  9. R. Cattolica, Appl. Opt. 20, 1156 (1981).
    [CrossRef] [PubMed]
  10. G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. 2, 97 (1962).
    [CrossRef]
  11. W. L. Dimpfl, J. L. Kinsey, J. Quant. Spectrosc. Radiat. Transfer 21, 233 (1979).
    [CrossRef]
  12. I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
    [CrossRef]
  13. A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
    [CrossRef]
  14. J. D. Bradshaw, N. Omenetto, G. Zizak, J. N. Bower, J. D. Winefordner, Appl. Opt. 19, 2709 (1980).
    [CrossRef] [PubMed]
  15. G. Zizak, J. D. Winefordner, Combust. Flame 44, 35 (1982).
    [CrossRef]
  16. R. L. McKenzie, K. P. Gross, Appl. Opt. 20, 2153 (1981).
    [CrossRef] [PubMed]
  17. T. Ozaki, Y. Matsui, T. Ohsawa, J. Appl. Phys. 52, 2593 (1981).
    [CrossRef]
  18. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Appl. Opt. 19, 3295 (1980).
    [CrossRef] [PubMed]
  19. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH Concentration in Flames,” to appear in Combust. Flame.
  20. J. M. Harris, F. E. Lytle, T. C. McCain, Anal. Chem. 48, 2095 (1976).
    [CrossRef]
  21. R. C. Peterson, “Kinetics of Hydrogen–Oxygen–Argon and Hydrogen–Oxygen–Argon–Pyridine Combustion Using a Flat Flame Burner,” Ph.D. Thesis, Schoolof Mechanical Engineering, Purdue U., West Lafayette, Ind. (1981).
  22. R. N. Zare, Acc. Chem. Res. 4, 361 (1971).
    [CrossRef]
  23. R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
    [CrossRef]
  24. D. R. Crosley, SRI Report, in preparation.
  25. P. J. Doherty, D. R. Crosley, SRI International; private communication (1981).
  26. A. C. Eckbreth, Combust. Flame 31, 231 (1978).
    [CrossRef]

1982

D. R. Crosley, G. P. Smith, Combust. Flame 44, 27 (1982).
[CrossRef]

G. Zizak, J. D. Winefordner, Combust. Flame 44, 35 (1982).
[CrossRef]

1981

T. Ozaki, Y. Matsui, T. Ohsawa, J. Appl. Phys. 52, 2593 (1981).
[CrossRef]

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

R. Cattolica, Appl. Opt. 20, 1156 (1981).
[CrossRef] [PubMed]

R. L. McKenzie, K. P. Gross, Appl. Opt. 20, 2153 (1981).
[CrossRef] [PubMed]

1980

1979

W. L. Dimpfl, J. L. Kinsey, J. Quant. Spectrosc. Radiat. Transfer 21, 233 (1979).
[CrossRef]

J. H. Bechtel, Appl. Opt. 18, 2100 (1979).
[CrossRef] [PubMed]

1978

A. C. Eckbreth, Combust. Flame 31, 231 (1978).
[CrossRef]

1977

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

1976

J. M. Harris, F. E. Lytle, T. C. McCain, Anal. Chem. 48, 2095 (1976).
[CrossRef]

1974

C. C. Wang, L. I. Davis, Appl. Phys. Lett. 25, 34 (1974).
[CrossRef]

1971

R. N. Zare, Acc. Chem. Res. 4, 361 (1971).
[CrossRef]

1962

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. 2, 97 (1962).
[CrossRef]

Anderson, W. R.

W. R. Anderson, “Laser Excited Fluorescence Measurement of OH Rotational Temperatures in a CH4/N2O Flame,” Eastern Section Meeting, The Combustion Institute, Atlanta (Nov. 1979).

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” to appear in Combust. Flame.

Bechtel, J. H.

Bower, J. N.

Bradshaw, J. D.

Cattolica, R.

Cattolica, R. J.

R. J. Cattolica, “OH Rotational Temperature from Laser Induced Fluorescence,” Western States Section Spring Meeting, The Combustion Institute, Boulder, Colo. (Apr.1978).

Chan, C.

Chidsey, I. L.

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

Crosley, D. R.

D. R. Crosley, G. P. Smith, Combust. Flame 44, 27 (1982).
[CrossRef]

D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980).
[CrossRef] [PubMed]

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

D. R. Crosley, SRI Report, in preparation.

P. J. Doherty, D. R. Crosley, SRI International; private communication (1981).

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. 2, 97 (1962).
[CrossRef]

Daily, J. W.

Davis, L. I.

C. C. Wang, L. I. Davis, Appl. Phys. Lett. 25, 34 (1974).
[CrossRef]

Decker, L. J.

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” to appear in Combust. Flame.

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. 2, 97 (1962).
[CrossRef]

Dimpfl, W. L.

W. L. Dimpfl, J. L. Kinsey, J. Quant. Spectrosc. Radiat. Transfer 21, 233 (1979).
[CrossRef]

Doherty, P. J.

P. J. Doherty, D. R. Crosley, SRI International; private communication (1981).

Eckbreth, A. C.

A. C. Eckbreth, Combust. Flame 31, 231 (1978).
[CrossRef]

Gillis, J. R.

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

Goldman, A.

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

Gross, K. P.

Harris, J. M.

J. M. Harris, F. E. Lytle, T. C. McCain, Anal. Chem. 48, 2095 (1976).
[CrossRef]

Kinsey, J. L.

W. L. Dimpfl, J. L. Kinsey, J. Quant. Spectrosc. Radiat. Transfer 21, 233 (1979).
[CrossRef]

Kotlar, A. J.

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” to appear in Combust. Flame.

Laurendeau, N. M.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Appl. Opt. 19, 3295 (1980).
[CrossRef] [PubMed]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH Concentration in Flames,” to appear in Combust. Flame.

Lengel, R. K.

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

Lucht, R. P.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Appl. Opt. 19, 3295 (1980).
[CrossRef] [PubMed]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH Concentration in Flames,” to appear in Combust. Flame.

Lytle, F. E.

J. M. Harris, F. E. Lytle, T. C. McCain, Anal. Chem. 48, 2095 (1976).
[CrossRef]

Matsui, Y.

T. Ozaki, Y. Matsui, T. Ohsawa, J. Appl. Phys. 52, 2593 (1981).
[CrossRef]

McCain, T. C.

J. M. Harris, F. E. Lytle, T. C. McCain, Anal. Chem. 48, 2095 (1976).
[CrossRef]

McKenzie, R. L.

Ohsawa, T.

T. Ozaki, Y. Matsui, T. Ohsawa, J. Appl. Phys. 52, 2593 (1981).
[CrossRef]

Omenetto, N.

Ozaki, T.

T. Ozaki, Y. Matsui, T. Ohsawa, J. Appl. Phys. 52, 2593 (1981).
[CrossRef]

Peterson, R. C.

R. C. Peterson, “Kinetics of Hydrogen–Oxygen–Argon and Hydrogen–Oxygen–Argon–Pyridine Combustion Using a Flat Flame Burner,” Ph.D. Thesis, Schoolof Mechanical Engineering, Purdue U., West Lafayette, Ind. (1981).

Smith, G. P.

D. R. Crosley, G. P. Smith, Combust. Flame 44, 27 (1982).
[CrossRef]

D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980).
[CrossRef] [PubMed]

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Appl. Opt. 19, 3295 (1980).
[CrossRef] [PubMed]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH Concentration in Flames,” to appear in Combust. Flame.

Wang, C. C.

C. C. Wang, L. I. Davis, Appl. Phys. Lett. 25, 34 (1974).
[CrossRef]

Winefordner, J. D.

Zare, R. N.

R. N. Zare, Acc. Chem. Res. 4, 361 (1971).
[CrossRef]

Zizak, G.

Acc. Chem. Res.

R. N. Zare, Acc. Chem. Res. 4, 361 (1971).
[CrossRef]

Anal. Chem.

J. M. Harris, F. E. Lytle, T. C. McCain, Anal. Chem. 48, 2095 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. C. Wang, L. I. Davis, Appl. Phys. Lett. 25, 34 (1974).
[CrossRef]

Combust. Flame

D. R. Crosley, G. P. Smith, Combust. Flame 44, 27 (1982).
[CrossRef]

G. Zizak, J. D. Winefordner, Combust. Flame 44, 35 (1982).
[CrossRef]

A. C. Eckbreth, Combust. Flame 31, 231 (1978).
[CrossRef]

J. Appl. Phys.

T. Ozaki, Y. Matsui, T. Ohsawa, J. Appl. Phys. 52, 2593 (1981).
[CrossRef]

J. Chem. Phys.

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

J. Quant. Spectrosc. Radiat.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. 2, 97 (1962).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

W. L. Dimpfl, J. L. Kinsey, J. Quant. Spectrosc. Radiat. Transfer 21, 233 (1979).
[CrossRef]

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

Other

W. R. Anderson, “Laser Excited Fluorescence Measurement of OH Rotational Temperatures in a CH4/N2O Flame,” Eastern Section Meeting, The Combustion Institute, Atlanta (Nov. 1979).

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” to appear in Combust. Flame.

R. J. Cattolica, “OH Rotational Temperature from Laser Induced Fluorescence,” Western States Section Spring Meeting, The Combustion Institute, Boulder, Colo. (Apr.1978).

D. R. Crosley, SRI Report, in preparation.

P. J. Doherty, D. R. Crosley, SRI International; private communication (1981).

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH Concentration in Flames,” to appear in Combust. Flame.

R. C. Peterson, “Kinetics of Hydrogen–Oxygen–Argon and Hydrogen–Oxygen–Argon–Pyridine Combustion Using a Flat Flame Burner,” Ph.D. Thesis, Schoolof Mechanical Engineering, Purdue U., West Lafayette, Ind. (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two-line OH LSF temperature measurement scheme. The P1(5) and Q1(10) lines are excited by the laser. Temperature is calculated from the ratio of the fluorescence intensities of the R1(3) and P1(11) lines.

Fig. 2
Fig. 2

Experimental fluorescence system.

Fig. 3
Fig. 3

Temperature profiles in a lean H2/O2/Ar flat flame: Pf = 72 Torr; ϕ = 0.6; total mass flow rate = 0.2 gmoles/min; N ˙ O 2 / ( N ˙ O 2 + N ˙ Ar ) = 0.21.

Fig. 4
Fig. 4

Temperature profiles in a stoichiometric H2/O2/Ar flat flame: Pf = 72 Torr; ϕ = 1.0; total mass flow rate = 0.2 gmoles/min; N ˙ O 2 / ( N ˙ O 2 + N ˙ Ar ) = 0.21.

Fig. 5
Fig. 5

Temperature profiles in a rich H2/O2/Ar flat flame: Pf = 72 Torr, ϕ = 1.4; total mass flow rate = 0.2 gmoles/min; N ˙ O 2 / ( N ˙ O 2 + N ˙ Ar ) = 0.21.

Tables (2)

Tables Icon

Table I Temperature Errors Introduced by Errors in the Fluorescence Intensity Ratio for Selected OH Excitation–Emission Line Pairs for Two-Line LSF Temperature Measurement

Tables Icon

Table II Observed and Expected Fluorescence Ratios for Lean, Stoichlometric, and Rich H2O2/Ar Flames (Pf = 72 Torr; m ˙ = 0.2 gmoles/min)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V f = N 2 V c A f h c ν f G Ω c / 4 π ,
N 1 + N 2 = N 1 0 = constant ,
N 2 s = N 1 0 g 2 g 1 + g 2 ,
V f s α ν f A f N 2 s = ν f A f N 1 0 g 2 / ( g 1 + g 2 ) ,
N 1 0 = N T g 1 exp ( - h c E 1 / k T f ) / Z T ,
V f s α ν f A f g 1 g 2 g 1 + g 2 exp ( - h c E 1 / k T f ) .
T f = ( h c / k ) ( E 1 m - E 1 k ) ln ( V f s k / α k ) - ln ( V f s m / α m ) ,
α k = k ν k A f k g 1 k g 2 k g 1 k + g 2 k ,
T f = ( h c / k ) Δ E 1 ln ( β R ) ,
R = ( V f s k ) / ( V f s m ) ,             β = ( α m / α k ) , Δ E 1 = E 1 m - E 1 k .
1 R d R d T = - ( h c / k ) Δ E 1 T f 2 .
Δ T f T f = - T f ( h c / k ) Δ E 1 Δ R R .
R exp ( T f ) = exp [ ( h c / k ) Δ E 1 / T f ] β ,

Metrics