Abstract

Gaussian transverse eigenmodes of a stimulated scattering phase-conjugate resonator are calculated. The experimental setup which provides the stimulated scattering phase-conjugate resonator is described.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
    [CrossRef]
  2. M. M. Denariez-Roberge, G. Giuliani, Opt. Lett. 6, 339 (1981).
    [CrossRef] [PubMed]
  3. R. C. Lind, D. G. Steel, Opt. Lett. 6, 554 (1981).
    [CrossRef] [PubMed]
  4. P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 602 (1980).
    [CrossRef] [PubMed]
  5. A. E. Siegman, P. A. Bélanger, A. Hardy, in Optical Phase Conjugation, R. A. Fisher, Ed. (Academic, New York, 1982), Chap. 10.
  6. R. Trébino, A. E. Siegman, Opt. Commun. 32, 1 (1980).
    [CrossRef]
  7. G. G. Kochemasov, V. D. Nikolsev, Sov. J. Quantum Electron. 7, 60 (1977).
    [CrossRef]
  8. G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
    [CrossRef]
  9. I. P. Batra, R. H. Enns, Can. J. Phys. 47, 1283 (1969).
    [CrossRef]
  10. V. M. Rysakov, Yu V. Aristov, V. I. Korotkov, Opt. Spectrosc. 47, 412 (1979).

1981 (2)

1980 (2)

1979 (3)

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[CrossRef]

J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

V. M. Rysakov, Yu V. Aristov, V. I. Korotkov, Opt. Spectrosc. 47, 412 (1979).

1977 (1)

G. G. Kochemasov, V. D. Nikolsev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

1969 (1)

I. P. Batra, R. H. Enns, Can. J. Phys. 47, 1283 (1969).
[CrossRef]

Aristov, Yu V.

V. M. Rysakov, Yu V. Aristov, V. I. Korotkov, Opt. Spectrosc. 47, 412 (1979).

Au Yeung, J.

J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Batra, I. P.

I. P. Batra, R. H. Enns, Can. J. Phys. 47, 1283 (1969).
[CrossRef]

Bélanger, P. A.

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 602 (1980).
[CrossRef] [PubMed]

A. E. Siegman, P. A. Bélanger, A. Hardy, in Optical Phase Conjugation, R. A. Fisher, Ed. (Academic, New York, 1982), Chap. 10.

Denariez-Roberge, M. M.

Enns, R. H.

I. P. Batra, R. H. Enns, Can. J. Phys. 47, 1283 (1969).
[CrossRef]

Fekete, D.

J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Giuliani, G.

Hardy, A.

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 602 (1980).
[CrossRef] [PubMed]

A. E. Siegman, P. A. Bélanger, A. Hardy, in Optical Phase Conjugation, R. A. Fisher, Ed. (Academic, New York, 1982), Chap. 10.

Hellwarth, R. W.

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[CrossRef]

Kochemasov, G. G.

G. G. Kochemasov, V. D. Nikolsev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

Korotkov, V. I.

V. M. Rysakov, Yu V. Aristov, V. I. Korotkov, Opt. Spectrosc. 47, 412 (1979).

Lind, R. C.

Martin, G.

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[CrossRef]

Nikolsev, V. D.

G. G. Kochemasov, V. D. Nikolsev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

Pepper, D. M.

J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Rysakov, V. M.

V. M. Rysakov, Yu V. Aristov, V. I. Korotkov, Opt. Spectrosc. 47, 412 (1979).

Siegman, A. E.

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 602 (1980).
[CrossRef] [PubMed]

R. Trébino, A. E. Siegman, Opt. Commun. 32, 1 (1980).
[CrossRef]

A. E. Siegman, P. A. Bélanger, A. Hardy, in Optical Phase Conjugation, R. A. Fisher, Ed. (Academic, New York, 1982), Chap. 10.

Steel, D. G.

Trébino, R.

R. Trébino, A. E. Siegman, Opt. Commun. 32, 1 (1980).
[CrossRef]

Yariv, A.

J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[CrossRef]

Can. J. Phys. (1)

I. P. Batra, R. H. Enns, Can. J. Phys. 47, 1283 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Au Yeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Opt. Commun. (1)

R. Trébino, A. E. Siegman, Opt. Commun. 32, 1 (1980).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (1)

V. M. Rysakov, Yu V. Aristov, V. I. Korotkov, Opt. Spectrosc. 47, 412 (1979).

Sov. J. Quantum Electron. (1)

G. G. Kochemasov, V. D. Nikolsev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

Other (1)

A. E. Siegman, P. A. Bélanger, A. Hardy, in Optical Phase Conjugation, R. A. Fisher, Ed. (Academic, New York, 1982), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

General phase-conjugate optical resonator using stimulated scattering.

Fig. 2
Fig. 2

Schematic of a phase-conjugate resonator where the nonlinear process is started by the beam of a conventional resonator. The length of the conventional resonator (CR) is 2L and it is characterized by its g parameter, while the length of the phase-conjugate resonator is L.

Fig. 3
Fig. 3

Ratio of the beam waists of the double round-trip eigenmodes W4N and W4N+2 to the beam waist of the conventional resonator eigenmode WCR on the conventional mirror (CM) for varying values of parameter β. The double dotted line shows the same ratio for the one round-trip eigenmode W(1) on the conventional mirror.

Fig. 4
Fig. 4

Ratio of the beam waists of the double round-trip W4N and W4N+2 and one round-trip W(1) eigenmodes to the beam waist of the conventional resonator eigenmode WCR on the conventional mirror (CM) for varying values of parameter g when β = 0.2.

Fig. 5
Fig. 5

Schematic of the experimental setup. The counterpropagating starting waves are collinear with the phase-conjugate resonator axis and are distinguished from the phase-conjugated signals by separate polarizations.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( q 0 ) CM = ( d b c a ) q 0 ,
q 2 = ( a b c d ) ( q 0 ) CM ,
q 1 = ( A B C A ) q 0 ,
q 2 q 0 = q ( 1 ) ,
W R = β W i ,
R R = - R i 1 + Z 0 Z β - 4 - 1 ,
R R = - R i ,
W 2 = β W 1 ,             R 2 = - R 1 ,
1 q = 1 R - j λ π W 2 .
W ( 1 ) 2 = β λ B π ,
R ( 1 ) = - ( B / A ) .
δ R 2 = - β 2 δ R 0 ,
δ W 2 = - δ W 0 .
| δ q 2 δ q 0 | < 1.
W 0 W 2 = W ( 1 ) 2 .
W 4 N 2 = W 0 2 n = 0 N - 1 ( 1 + H 0 2 β 6 + 8 n ) n = 0 N - 1 ( 1 + H 0 2 β 2 + 8 n ) ,
H 0 = ( A + B R 0 ) W 0 2 W ( 1 ) 2 ,
W 4 N + 2 2 = W ( 1 ) 4 W 4 N 2 ( 1 + H 0 2 β 2 + 8 N ) .
( A + B R N ) = ( A + B R 0 ) ( W 0 W 4 N ) 2 β 4 N .
W 4 N E 4 N + 2 = W ( 1 ) 2 ,
W 4 N = W 0 ,             W 4 N + 2 = β W 0
( W 4 N ) CM = 2 W 0 ,             ( W 4 N + 2 ) CM = ( 1 + β 4 β 2 ) W 0 .

Metrics