Abstract

A new liquid crystal light valve (LCLV) is presented using bulk monocrystalline Bi12SiO20 (BSO) as both the photoconductive material and as one of the substrates supporting the liquid crystal layer. The photoconductive properties of the BSO under ac voltages are investigated. The device operates at room temperature with a low ac drive voltage (25-V ac at 500 Hz). These specific properties are explained from the aspect of an equivalent electrical circuit of the structure. A prototype BSO LCLV with a 15-μm liquid crystal thickness shows a 10-lp mm−1 spatial resolution. The device coherent modulation transfer function was measured experimentally and found to agree with theory. Typical writing energies are ~20 μJ cm−2 at wavelength λ = 450 nm.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).
  2. W. P. Bleha et al., Opt. Eng. 17, 371 (1978).
  3. M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).
  4. P. O. Braatz et al., in Proceedings, International Electron Devices Meeting (IEEE, New York, 1979), pp. 540–542.
  5. A. V. Parfenov, I. N. Kompanets, Yu. M. Popov, Sov. J. Quantum Electron. 10, 167 (1980).
    [Crossref]
  6. G. Marie et al., in Advances in Image Pick-up and Display, B. Kazan, Ed. (Academic, New York, 1974), pp. 225–332.
  7. W. S. Colburn, B. J. Chang, Opt. Eng. 17, 334 (1978).
  8. D. Casasent, in Laser Applications, Vol. 2, M. Ross, Ed. (Academic, New York, 1977), pp. 43–105.
  9. C. Warde, A. D. Fisher, D. M. Coco, M. Y. Burmawi, Opt. Lett. 3, 196 (1978).
    [Crossref] [PubMed]
  10. R. W. Smith, A. Rose, Phys. Rev. 97, 6 (1955).
  11. P. J. Van Heerden, Phys. Rev. 108, 2 (1957).
    [Crossref]
  12. A. Many, G. Rakavy, Phys. Rev. 126, 6 (1957).
  13. Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).
  14. W. R. Roach, IEEE Trans. Electron. Devices ED-21, 8–453 (1954).
  15. Y. Owechko, A. R. Tanguay, Proc. Soc. Photo-Opt. Instrum. Eng. 202, 110 (1979).
  16. J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21 (1979).
    [Crossref] [PubMed]
  17. J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
    [Crossref]
  18. L. Pichon, J. P. Huignard, Opt. Commun. 36, 4 (1981).
    [Crossref]
  19. G. Lebreton, in Proceedings, ICO 12 Conference, Graz, Sept (1981).
  20. A. D. Gara, Appl. Opt. 18, 172 (1979).
    [Crossref] [PubMed]

1981 (1)

L. Pichon, J. P. Huignard, Opt. Commun. 36, 4 (1981).
[Crossref]

1980 (2)

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[Crossref]

A. V. Parfenov, I. N. Kompanets, Yu. M. Popov, Sov. J. Quantum Electron. 10, 167 (1980).
[Crossref]

1979 (3)

1978 (5)

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

W. S. Colburn, B. J. Chang, Opt. Eng. 17, 334 (1978).

C. Warde, A. D. Fisher, D. M. Coco, M. Y. Burmawi, Opt. Lett. 3, 196 (1978).
[Crossref] [PubMed]

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

W. P. Bleha et al., Opt. Eng. 17, 371 (1978).

1971 (1)

M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).

1957 (2)

P. J. Van Heerden, Phys. Rev. 108, 2 (1957).
[Crossref]

A. Many, G. Rakavy, Phys. Rev. 126, 6 (1957).

1955 (1)

R. W. Smith, A. Rose, Phys. Rev. 97, 6 (1955).

1954 (1)

W. R. Roach, IEEE Trans. Electron. Devices ED-21, 8–453 (1954).

Assouline, G.

M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).

Aubourg, P.

Bleha, W. P.

W. P. Bleha et al., Opt. Eng. 17, 371 (1978).

Braatz, P. O.

P. O. Braatz et al., in Proceedings, International Electron Devices Meeting (IEEE, New York, 1979), pp. 540–542.

Burmawi, M. Y.

Bykovskii, Yu. A.

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

Casasent, D.

D. Casasent, in Laser Applications, Vol. 2, M. Ross, Ed. (Academic, New York, 1977), pp. 43–105.

Chang, B. J.

W. S. Colburn, B. J. Chang, Opt. Eng. 17, 334 (1978).

Chmyrev, V. I.

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

Coco, D. M.

Colburn, W. S.

W. S. Colburn, B. J. Chang, Opt. Eng. 17, 334 (1978).

Corbett, F. J.

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

Fisher, A. D.

Frappier, M.

M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).

Gara, A. D.

Hareng, M.

M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).

Herriau, J. P.

Horwitz, B. A.

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

Huignard, J. P.

Kiryukhin, A. D.

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

Kompanets, I. N.

A. V. Parfenov, I. N. Kompanets, Yu. M. Popov, Sov. J. Quantum Electron. 10, 167 (1980).
[Crossref]

Lebreton, G.

G. Lebreton, in Proceedings, ICO 12 Conference, Graz, Sept (1981).

Leiba, E.

M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).

Many, A.

A. Many, G. Rakavy, Phys. Rev. 126, 6 (1957).

Marie, G.

G. Marie et al., in Advances in Image Pick-up and Display, B. Kazan, Ed. (Academic, New York, 1974), pp. 225–332.

Owechko, Y.

Y. Owechko, A. R. Tanguay, Proc. Soc. Photo-Opt. Instrum. Eng. 202, 110 (1979).

Parfenov, A. V.

A. V. Parfenov, I. N. Kompanets, Yu. M. Popov, Sov. J. Quantum Electron. 10, 167 (1980).
[Crossref]

Pichon, L.

L. Pichon, J. P. Huignard, Opt. Commun. 36, 4 (1981).
[Crossref]

Popov, Yu. M.

A. V. Parfenov, I. N. Kompanets, Yu. M. Popov, Sov. J. Quantum Electron. 10, 167 (1980).
[Crossref]

Rakavy, G.

A. Many, G. Rakavy, Phys. Rev. 126, 6 (1957).

Roach, W. R.

W. R. Roach, IEEE Trans. Electron. Devices ED-21, 8–453 (1954).

Rose, A.

R. W. Smith, A. Rose, Phys. Rev. 97, 6 (1955).

Skorikov, V. M.

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

Smith, R. W.

R. W. Smith, A. Rose, Phys. Rev. 97, 6 (1955).

Spitz, E.

Tanguay, A. R.

Y. Owechko, A. R. Tanguay, Proc. Soc. Photo-Opt. Instrum. Eng. 202, 110 (1979).

Van Heerden, P. J.

P. J. Van Heerden, Phys. Rev. 108, 2 (1957).
[Crossref]

Warde, C.

White, J. O.

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[Crossref]

Yariv, A.

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[Crossref]

Zuev, V. V.

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[Crossref]

IEEE Trans. Electron. Devices (1)

W. R. Roach, IEEE Trans. Electron. Devices ED-21, 8–453 (1954).

Nouv. Rev. Opt. (1)

M. Frappier, G. Assouline, M. Hareng, E. Leiba, Nouv. Rev. Opt. 2, 24 (1971).

Opt. Commun. (1)

L. Pichon, J. P. Huignard, Opt. Commun. 36, 4 (1981).
[Crossref]

Opt. Eng. (3)

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

W. P. Bleha et al., Opt. Eng. 17, 371 (1978).

W. S. Colburn, B. J. Chang, Opt. Eng. 17, 334 (1978).

Opt. Lett. (2)

Phys. Rev. (3)

R. W. Smith, A. Rose, Phys. Rev. 97, 6 (1955).

P. J. Van Heerden, Phys. Rev. 108, 2 (1957).
[Crossref]

A. Many, G. Rakavy, Phys. Rev. 126, 6 (1957).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

Y. Owechko, A. R. Tanguay, Proc. Soc. Photo-Opt. Instrum. Eng. 202, 110 (1979).

Sov. J. Quantum Electron. (1)

A. V. Parfenov, I. N. Kompanets, Yu. M. Popov, Sov. J. Quantum Electron. 10, 167 (1980).
[Crossref]

Sov. Phys. Semicond. (1)

Yu. A. Bykovskii, V. V. Zuev, A. D. Kiryukhin, V. M. Skorikov, V. I. Chmyrev, Sov. Phys. Semicond. 12, 1190 (1978).

Other (4)

G. Lebreton, in Proceedings, ICO 12 Conference, Graz, Sept (1981).

G. Marie et al., in Advances in Image Pick-up and Display, B. Kazan, Ed. (Academic, New York, 1974), pp. 225–332.

D. Casasent, in Laser Applications, Vol. 2, M. Ross, Ed. (Academic, New York, 1977), pp. 43–105.

P. O. Braatz et al., in Proceedings, International Electron Devices Meeting (IEEE, New York, 1979), pp. 540–542.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Cross-section view of the BSO liquid crystal light valve.

Fig. 2
Fig. 2

Typical absorption coefficient of the BSO vs wavelength.

Fig. 3
Fig. 3

Current response of the BSO to a step voltage under different illumination. Saturation value of the current is limited by space charge effects due to electron trapping.

Fig. 4
Fig. 4

Decay time constant of the space-charge-limited current in BSO vs Φ0/Φ (where Φ is incident illumination of the crystal; when λ = 442 nm, Φ0 = 14 mW cm−2.

Fig. 5
Fig. 5

Electrical equivalent circuit of the BSO LCLV. Uniform illumination Φ of the BSO and ac applied voltage to the structure.

Fig. 6
Fig. 6

Modulus of BSO admittance vs frequency of the applied voltage. Experimental points; theoretical curves; when illumination level is Φ ≃ 14 mW cm−2, λ = 450 nm.

Fig. 7
Fig. 7

Transferred voltage on the liquid crystal layer VLC vs the frequency of the driving voltage; when V = V0 cosωt the illumination level on the light valve is Φ ≃ 14 mW cm−2.

Fig. 8
Fig. 8

Transferred voltage on the liquid crystal layer vs the incident illumination level Φ. Comparison of ac and dc operation.

Fig. 9
Fig. 9

Notations used for theoretical analysis of the spatial resolution of the light valve.

Fig. 10
Fig. 10

Modulation transfer function of the BSO LCLV. Experimental points; theoretical curves; when liquid crystal thicknesses are 15 and 5 μm.

Fig. 11
Fig. 11

Experimental setup for measurment of the MTF using coherent diffraction by a photoinduced grating with variable fringe spacing.

Fig. 12
Fig. 12

Projected images from the BSO LCLV using both incoherent light sources for recording (mercury lamp) and readout (slide projector λ >550 nm) (incoherent-to-incoherent conversion): (a) binary chart pattern; (b) image projection with gray levels.

Fig. 13
Fig. 13

Three-dimensional representation of wave front distortion after passing through the BSO LCLV at λ = 633 nm; maximum deviation = 1.2λ.

Fig. 14
Fig. 14

Photograph of a resolution chart with coherent readout of the light valve (incoherent-to-coherent conversion).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R LC = ρ LC l S ,             C LC = ɛ 0 ɛ LC S l , ρ LC 10 10 Ω cm ,             ɛ LC 10 ,
Y BSO = R 1 C 1 2 ω 2 1 + R 1 2 C 1 2 ω 2 + 1 R 0 + 1 R ϕ + j ( C 1 ω 1 + R 1 2 C 1 2 ω 2 + C 0 ω ) , Y LC = 1 R LC + j C LC ω , Y LCLV - 1 = Y LC - 1 + Y BSO - 1 .
V 1 ( X ; - d ) = V , V 2 ( X ; l ) = O , V 1 ( X ; O ) = V 2 ( X , O ) , ɛ V 1 Z - ɛ z V 2 Z = σ 0 + σ N cos π N X ,
V N R ( X ) = σ N π N cos π N X ɛ coth π N d + ɛ x ɛ z coth π N ɛ z ɛ x l ,
V 0 = ɛ V LC + d σ 0 ɛ l + ɛ z d l .
S N = V N V λ / 2 σ N , S N = 1 V λ / 2 π N 1 coth π N d + ɛ x ɛ z coth π N ɛ x ɛ z l .
S N S 0 = 1 π N ɛ / d + ɛ z / l ɛ coth π N d + ɛ x ɛ z coth π N ɛ x ɛ z l .
I = I 0 2 sin 2 [ π 2 V V π ( 1 + S N S 0 cos π N X ) ] ,

Metrics