Abstract

A compact (plug = 1.5 g) low-loss lens connector for single-mode fibers (SMF) which can operate in a wide range of wavelengths was developed. This lens connector consists of two lens assemblies using 250-μm diam AR coated sapphire balls precisely positioned between the SMF endfaces. The lens connection loss between the same kind of SMFs with a Gaussian beam spot radius ranging from 3.55 to 6.63 μm is predicted to be ≤1.0 dB. The average lens connection loss is 0.54 dB. Loss reproducibility after connecting 1000 times is less than or equal to ±0.15 dB.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Masuda, T. Iwama, Y. Daido, Appl. Opt. 20, 4035 (1981).
    [CrossRef] [PubMed]
  2. I. Hatakeyama, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 614 (1978).
    [CrossRef]
  3. N. Shimizu, H. Tsuchiya, Trans. IECE J62-c, 237 (1979).
  4. K. Nawata, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper WA4.
  5. N. K. Cheung, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WC7.
  6. C. A. Millar, D. B. Payne, “Monomode Fiber Connector Using Fiber Bead Location,” in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), pp. 306–309.
  7. A. Nicia, A. Tholen, “High-Efficient Ball-Lens Connector and Related Functional Devices for Single-Mode Fibers,” in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), 7.5–1,2.
  8. R. E. Wagner, W. J. Tomlinson, J. Opt. Soc. Am. 70, 1596 (1980).
  9. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
  10. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).
  11. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  12. G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).

1981

1980

R. E. Wagner, W. J. Tomlinson, J. Opt. Soc. Am. 70, 1596 (1980).

1979

N. Shimizu, H. Tsuchiya, Trans. IECE J62-c, 237 (1979).

1978

I. Hatakeyama, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 614 (1978).
[CrossRef]

1977

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

1965

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

1962

G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).

Boyd, G. D.

G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).

Cheung, N. K.

N. K. Cheung, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WC7.

Daido, Y.

Hatakeyama, I.

I. Hatakeyama, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 614 (1978).
[CrossRef]

Iwama, T.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Masuda, S.

Millar, C. A.

C. A. Millar, D. B. Payne, “Monomode Fiber Connector Using Fiber Bead Location,” in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), pp. 306–309.

Nawata, K.

K. Nawata, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper WA4.

Nicia, A.

A. Nicia, A. Tholen, “High-Efficient Ball-Lens Connector and Related Functional Devices for Single-Mode Fibers,” in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), 7.5–1,2.

Payne, D. B.

C. A. Millar, D. B. Payne, “Monomode Fiber Connector Using Fiber Bead Location,” in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), pp. 306–309.

Shimizu, N.

N. Shimizu, H. Tsuchiya, Trans. IECE J62-c, 237 (1979).

Tholen, A.

A. Nicia, A. Tholen, “High-Efficient Ball-Lens Connector and Related Functional Devices for Single-Mode Fibers,” in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), 7.5–1,2.

Tomlinson, W. J.

R. E. Wagner, W. J. Tomlinson, J. Opt. Soc. Am. 70, 1596 (1980).

Tsuchiya, H.

N. Shimizu, H. Tsuchiya, Trans. IECE J62-c, 237 (1979).

I. Hatakeyama, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 614 (1978).
[CrossRef]

Wagner, R. E.

R. E. Wagner, W. J. Tomlinson, J. Opt. Soc. Am. 70, 1596 (1980).

Appl. Opt.

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).

IEEE J. Quantum Electron.

I. Hatakeyama, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 614 (1978).
[CrossRef]

J. Opt. Soc. Am.

R. E. Wagner, W. J. Tomlinson, J. Opt. Soc. Am. 70, 1596 (1980).

Trans. IECE

N. Shimizu, H. Tsuchiya, Trans. IECE J62-c, 237 (1979).

Other

K. Nawata, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper WA4.

N. K. Cheung, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WC7.

C. A. Millar, D. B. Payne, “Monomode Fiber Connector Using Fiber Bead Location,” in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), pp. 306–309.

A. Nicia, A. Tholen, “High-Efficient Ball-Lens Connector and Related Functional Devices for Single-Mode Fibers,” in Technical Digest, Seventh European Conference on Optical Communication, Copenhagen (1981), 7.5–1,2.

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Cross section of lens connector ferrule AA′ cross section of the ferrule.

Fig. 2
Fig. 2

Cross section and top view of lens assembly.

Fig. 3
Fig. 3

Polishing jig, jig cross section, and fiber endface polisher.

Fig. 4
Fig. 4

Lens coating jig (top and bottom).

Fig. 5
Fig. 5

Light transmission loss of a coated sapphire plate.

Fig. 6
Fig. 6

Lens connector structure.

Fig. 7
Fig. 7

Core and lens of connector.

Fig. 8
Fig. 8

Worst-case lens connection losses at the various combinations of alignment conditions and two kinds of fiber [from Eqs. (8) and (9)]. Alignment conditions: Ep = 1.5 μm, S = Ea = 0.5 μm, φp = 5 × 10−4, La = 500 μm (listed in Tables I and II). Fibers: fibers 2 and 3 (listed in Table III). Light wavelength: λ = 1.2 and 1.55 μm. (*1) θ = 0.51°, Y = 3.15 μm. (*2) θ = 0.45°, Y = 4.15 μm. ○ and △ represent the experimental results of our lens connector using R = 125-μm sapphire ball lenses, including all loss factors. ○, fiber 2, λ = 1.2 μm, θ = 0.45°, Y = 4.15 μm. △, fiber 3, λ 1.55 μm, θ = 0.51°, Y = 3.15 μm.

Fig. 9
Fig. 9

Lens connection loss vs D from Eq. (10).

Fig. 10
Fig. 10

Lens connector optical system.

Fig. 11
Fig. 11

Calculated result of maximum deviation of light beam of position (Δr) and angle (Δβ) between light input plane and output plane, and maximum deviation of optical path length (ΔOp) between light input plane and output plane (at fiber 1 of Table III).

Fig. 12
Fig. 12

Ball lens connection loss L [=−10 × log(H)] vs normalized spherical radius (R/w) from Eq. (32).

Fig. 13
Fig. 13

Lens connection loss L [=−10 × log(H)] vs refractive index N of the ball lens material in perfect alignment from Eq. (32), where R/w = 19.

Fig. 14
Fig. 14

Lens centering manipulator. A reference lens connector and a ferrule (lens centering) are placed facing each other on a V-channel with a gap equal to the lens confocal length d3.

Fig. 15
Fig. 15

AA′ cross section of lens centering manipulator.

Fig. 16
Fig. 16

Cross section of lens assembly and ferrule.

Fig. 17
Fig. 17

Detailed structure of lens connector centering equipment.

Fig. 18
Fig. 18

Lens connector cross section and configuration.

Fig. 19
Fig. 19

Typical wavelength characteristic of the lens connector: light source, monochromator Δλ = 100 Å. Fiber 1 of Table III is used.

Fig. 20
Fig. 20

Repeated connection test of the lens connector. Fiber 1 of Table III is used.

Fig. 21
Fig. 21

Loss histogram of first 100 lens connectors. Fiber 1 of Table III is used.

Tables (5)

Tables Icon

Table I Mechanical Alignment of Ferrule and Socket

Tables Icon

Table II Lens Connector Loss Factors

Tables Icon

Table III Fiber Geometric Parameters Assumed 1.2–1.55-μm Spectral Region

Tables Icon

Table IV Worst Lens Connection Losses of Our Lens Connector Vs Butting Connector at Alignment Conditions of Tables I and II

Tables Icon

Table V Lens Connector Experimental Conditions

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

Y 2 ( E p + y + ϕ p F ) ,
θ 2 ( x + S / F ) ,
0 y E a ,
x E a / L a - y / ( 2 L a ) ,
E p E 1 + E 2 + E 3 ,
φ p φ 1 + φ 2 + φ 3 ,
φ 1 + φ 2 + φ 3 = E 1 / L p + E 2 / L p + ( J 1 / J 2 ) ( n - 1 ) ,
G Y = - 10 × log { exp [ - ( Y / W L ) 2 ] } ,
G Θ = - 10 × log { exp [ - ( θ / θ L ) 2 ] } ,
G D = - 10 × log ( 4 / { 4 + [ λ D / ( π · W L 2 n f ) ] 2 } ,
W L = λ F / ( π w ) ,
θ L = w / ( F n f ) ,
25 μ m 1.5 W L .
( r 2 β 2 ) = ( S 1 S 2 S 3 S 4 ) ( r 1 β 1 ) ,
S 1 = 1 - d 1 / F 1 - ( d 1 + d 3 - d 1 d 3 / F 1 ) / F 2 ,
S 2 = d 2 ( 1 - d 1 / F 1 ) + ( 1 - d 2 / F 2 ) ( d 1 + d 3 - d 1 d 3 / F 1 ) ,
S 3 = - 1 / F 1 - ( 1 - d 3 / F 1 ) / F 2 ,
S 4 = - d 2 / F 1 + ( 1 - d 3 / F 1 ) ( 1 - d 2 / F 2 ) .
F 1 = F 2 = F ,
d 1 = d 2 = d 3 / 2 = F .
r 2 = - r 1 ,
β 2 = - β 1 .
Δ r = 2 Δ F β 1 = - R Δ N β 1 / ( N - 1 ) 2 ,
Δ β = - 2 Δ F r 1 / F 2 = 4 Δ N r 1 ( R N 2 ) ,
F = N R / [ 2 ( N - 1 ) ] ,
Δ F = - R Δ N / [ 2 ( N - 1 ) 2 ] ,
( Δ r ) max = - 2 · 0.9044 [ 1.2 / ( π 3.55 ) ] = - 0.19 ( μ m ) ,
( Δ β ) max = + 2 · 0.9044 ( 6.63 / 146 2 ) = 0.03 ( degree ) ,
Δ F = - 125 · 8.14 × 10 - 3 / [ 2 ( 1.75 - 1 ) 2 ] = - 0.9044 ( μ m ) .
0 r 1 1.6 w             r m ,
0 β 1 1.6 λ / ( π w )             β m .
H = 0 r m 0 β m P ( r 1 , β 1 ) · exp [ - ( r 1 / w ) 2 - ( β 1 / θ ) 2 ] r 1 β 1 d r 1 d β 1 0 r m 0 β m exp [ - ( r 1 / w ) 2 - ( β 1 / θ ) 2 ] r 1 β 1 d r 1 d β 1 ,
θ = λ / π w .
P ( r 1 , β 1 ) = 4 W L 1 2 ( r 1 , β 1 ) W L 2 2 ( r 1 , β 1 ) [ W L 1 2 ( r 1 , β 1 ) + W L 2 2 ( r 1 , β 1 ) ] 2 .
W L 1 ( r 1 , β 1 ) = λ 4 Z 1 2 + Q 1 2 / 2 ( 2 π W 1 ) ,
W 1 = λ 4 d 1 2 + ( K w 2 ) 2 / ( 2 π w ) ,
Z 1 = [ 4 d 1 2 + ( K w 2 ) 2 ] { 4 d 1 - [ 4 d 1 2 + ( K w 2 ) 2 ] / F 1 ( r 1 , β 1 ) } ( ( 2 K w 2 ) 2 + { 4 d 1 - [ 4 d 1 2 + ( K w 2 ) 2 ] / F 1 ( r 1 , β 1 ) } 2 ) ,
Q 1 = 4 K w 2 [ 4 d 1 2 + ( K w 2 ) 2 ] ( ( 2 K w 2 ) 2 + { 4 d 1 - [ 4 d 1 2 + ( K w 2 ) 2 ] / F 1 ( r 1 , β 1 ) } 2 ) ,
K = 2 π / λ .
W L 2 ( r 1 , β 1 ) = λ 4 Z 2 2 + Q 2 2 / ( 2 π W 2 ) ,
W 2 = λ 4 d 2 2 + ( K w 2 ) 2 / ( 2 π w ) ,
Z 2 = [ 4 d 2 2 + ( K w 2 ) 2 ] { 4 d 2 - [ 4 d 2 2 + ( K w 2 ) 2 ] / F 2 ( r 1 , β 1 ) } ( ( 2 K w 2 ) 2 + { 4 d 2 - [ 4 d 2 2 + ( K w 2 ) 2 ] / F 2 ( r 1 , β 1 ) } 2 ) ,
Q 2 = 4 K w 2 [ 4 d 2 2 + ( K w 2 ) 2 ] ( ( 2 K w 2 ) 2 + { 4 d 2 - [ 4 d 2 2 + ( K w 2 ) 2 ] / F 2 ( r 1 , β 1 ) } 2 ) .
C = M e 1 sin ( δ ) / ( e 1 + e 2 ) ,

Metrics