Abstract

A novel method for measuring refractive index of gases and liquids is presented based on moire deflectometry. We demonstrate this technique by measuring the refractive index of diluted sucrose solutions and of air at atmospheric pressure.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kafri, Opt. Lett. 5, 555 (1980).
    [Crossref] [PubMed]
  2. O. Kafri, D. Meyerstein, Z. Karny, “Frequency Marker Based on Moire Deflectometry,” submitted for publication.
  3. J. Stricker, O. Kafri, AIAA J. 20, 820 (1982).
    [Crossref]
  4. O. Kafri, A. LivnatAppl. Opt. 20, 3098 (1981).
    [Crossref] [PubMed]
  5. E. Keren, E. Bar Ziv, I. Glatt, O. Kafri, Appl. Optics 20, 4263 (1981).
    [Crossref]
  6. M. Born, W. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 161.
  7. O. Kafri, E. Margalit, Appl. Opt. 20, 2344 (1981).
    [Crossref] [PubMed]
  8. O. Kafri, A. Livnat, Opt. Lett. 4, 314 (1979).
    [Crossref] [PubMed]
  9. R. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1973).

1982 (1)

J. Stricker, O. Kafri, AIAA J. 20, 820 (1982).
[Crossref]

1981 (3)

1980 (1)

1979 (1)

Bar Ziv, E.

E. Keren, E. Bar Ziv, I. Glatt, O. Kafri, Appl. Optics 20, 4263 (1981).
[Crossref]

Born, M.

M. Born, W. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 161.

Glatt, I.

E. Keren, E. Bar Ziv, I. Glatt, O. Kafri, Appl. Optics 20, 4263 (1981).
[Crossref]

Kafri, O.

J. Stricker, O. Kafri, AIAA J. 20, 820 (1982).
[Crossref]

O. Kafri, A. LivnatAppl. Opt. 20, 3098 (1981).
[Crossref] [PubMed]

E. Keren, E. Bar Ziv, I. Glatt, O. Kafri, Appl. Optics 20, 4263 (1981).
[Crossref]

O. Kafri, E. Margalit, Appl. Opt. 20, 2344 (1981).
[Crossref] [PubMed]

O. Kafri, Opt. Lett. 5, 555 (1980).
[Crossref] [PubMed]

O. Kafri, A. Livnat, Opt. Lett. 4, 314 (1979).
[Crossref] [PubMed]

O. Kafri, D. Meyerstein, Z. Karny, “Frequency Marker Based on Moire Deflectometry,” submitted for publication.

Karny, Z.

O. Kafri, D. Meyerstein, Z. Karny, “Frequency Marker Based on Moire Deflectometry,” submitted for publication.

Keren, E.

E. Keren, E. Bar Ziv, I. Glatt, O. Kafri, Appl. Optics 20, 4263 (1981).
[Crossref]

Livnat, A.

Margalit, E.

Meyerstein, D.

O. Kafri, D. Meyerstein, Z. Karny, “Frequency Marker Based on Moire Deflectometry,” submitted for publication.

Stricker, J.

J. Stricker, O. Kafri, AIAA J. 20, 820 (1982).
[Crossref]

Wolf, W.

M. Born, W. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 161.

AIAA J. (1)

J. Stricker, O. Kafri, AIAA J. 20, 820 (1982).
[Crossref]

Appl. Opt. (2)

Appl. Optics (1)

E. Keren, E. Bar Ziv, I. Glatt, O. Kafri, Appl. Optics 20, 4263 (1981).
[Crossref]

Opt. Lett. (2)

Other (3)

O. Kafri, D. Meyerstein, Z. Karny, “Frequency Marker Based on Moire Deflectometry,” submitted for publication.

R. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1973).

M. Born, W. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 161.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: CB is a collimated light beam, the three-compartment cell consists of two flat windows, W, and two zero diopter lenses, L; G1 and G2 are Ronchi ruling gratings; and S is a semitransparent screen.

Fig. 2
Fig. 2

Rotated fringe produced by an ideal lens; α is the rotation angle.

Fig. 3
Fig. 3

Deflectogram obtained by double exposure for measuring the rotation angle α from the values of p′ and p.

Tables (2)

Tables Icon

Table I Fringe Separations

Tables Icon

Table II Refractive Index of Sucrose Solutions

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

1 f = ( n s - n g ) 1 r 1 + ( n g - n r ) 1 r 2 ,
1 f = n s r 1 + C ,
P = P 0 / 2 sin ( θ / 2 ) ;
A = P / P 0 cos ( θ / 2 ) = ½ cot ( θ / 2 ) 1 / θ .
φ j , k = h j k A Δ = h j , k 2 tan ( θ / 2 ) Δ h j , k θ Δ .
φ = arctan y / f .
φ y / f = h θ / Δ .
h / y = Δ / f θ = tan α .
n s r 1 + C = θ tan α Δ .
d ( tan α ) d n s = Δ θ r 1 ,
α = 2 sin - 1 ( P / 2 p ) .
θ = 2 sin - 1 ( P 0 / 2 P ) .
α min = P p P a ,
Δ n min = α min θ r 1 Δ P θ r 1 Δ a .
Δ n min P θ / 2 Δ ,
Δ n min P 0 / 2 Δ .
Δ max a P 0 / λ .
Δ n min λ / 2 a .
n s = 1.3330 + r 1 θ tan [ 2 sin - 1 ( P / 2 P ) ] / 2 Δ .

Metrics