Abstract

The basic principle and experimental results of applying a specific contact screen for performing multiplex holographic filtering in a real-time coherent optical correlator are presented. The specific design and fabrication of a 1- and 2-D gray density contact screen as well as a 2-D dichromated gelatin phase screen are described. The 2-D density-type screen can yield nearly an equal intensity 5 × 5 array of spectrum islands at the Fourier plane of a Fourier transform lens in a coherent optical image processor. The main drawback of the density-type screen is the lack of required light efficiency at the Fourier plane because of the blocking of light by the silver particles in the screen. Dichromated gelatin phase screens can be made to alleviate this problem, but it is very difficult to fabricate a phase screen exactly according to our design due to inherent experimental limitations. Nevertheless a functional phase screen has been made for the desired correlation functions. Experimental results have demonstrated that the phase screen is reasonably efficient for the multiplex holographic filtering in the real-time correlator.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vander Lugt, F. B. Rotz, Appl. Opt. 9, 215 (1970).
    [CrossRef]
  2. A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,779,492 (Dec.1972).
  3. K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
    [CrossRef]
  4. J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979.
  5. J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).
  6. H. K. Liu, “Halftone Screen with Cell Matrix,” U.S. Patent4,188,225 (Feb.1980).
  7. J. W. Wesner, Appl. Opt. 13, 1703 (1974).
    [CrossRef] [PubMed]
  8. H. K. Liu, Acta Opt. Sinica 2, 97 (1981).
  9. B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
    [CrossRef] [PubMed]
  10. B. D. Guenther, C. D. Leonard, “Holographic Optics for Missile Guidance Systems,” U.S. Army Research and Development Command, T.R. T-79-12 (20Dec.1978).

1981 (1)

H. K. Liu, Acta Opt. Sinica 2, 97 (1981).

1980 (2)

K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).

1979 (2)

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979.

B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
[CrossRef] [PubMed]

1974 (1)

1970 (1)

Bondurant, R. A.

K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Chang, B. J.

Christensen, C. R.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).

Duthie, J. G.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).

Grumet, A.

A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,779,492 (Dec.1972).

Guenther, B. D.

B. D. Guenther, C. D. Leonard, “Holographic Optics for Missile Guidance Systems,” U.S. Army Research and Development Command, T.R. T-79-12 (20Dec.1978).

Leib, K.

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979.

Leib, K. G.

K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Leonard, C. D.

B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
[CrossRef] [PubMed]

B. D. Guenther, C. D. Leonard, “Holographic Optics for Missile Guidance Systems,” U.S. Army Research and Development Command, T.R. T-79-12 (20Dec.1978).

Liu, H. K.

H. K. Liu, Acta Opt. Sinica 2, 97 (1981).

H. K. Liu, “Halftone Screen with Cell Matrix,” U.S. Patent4,188,225 (Feb.1980).

McKenzie, R. D.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).

Mendelsohn, J.

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979.

Rotz, F. B.

Upatnieks, J.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).

Vander Lugt, A.

Wesner, J. W.

Wohlers, M.

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979.

Wohlers, M. R.

K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Acta Opt. Sinica (1)

H. K. Liu, Acta Opt. Sinica 2, 97 (1981).

Appl. Opt. (3)

Opt. Eng. (1)

K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979.

J. G. Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, Proc. Soc. Photo-Opt. Instrum. Eng. 213, 281 (1980).

Other (3)

H. K. Liu, “Halftone Screen with Cell Matrix,” U.S. Patent4,188,225 (Feb.1980).

A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,779,492 (Dec.1972).

B. D. Guenther, C. D. Leonard, “Holographic Optics for Missile Guidance Systems,” U.S. Army Research and Development Command, T.R. T-79-12 (20Dec.1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Diagrams of the Grumet multifocus holographic lens method and the screen-aided method.

Fig. 2
Fig. 2

Real-time coherent optical correlator.

Fig. 3
Fig. 3

(a) Photomicrograph of three-cell patterns of a 2-line/mm contact screen. (b) Fourier spectra of the screen.

Fig. 4
Fig. 4

Computer plot of the transmittance |T(x)| of one unit cell of a 1-D contact screen vs x, where T(x) is given by Eq. (1).

Fig. 5
Fig. 5

Computer plot of the theoretically calculated Fourier transform of the function |T(x)| of Fig. 4 vs spatial frequencies.

Fig. 6
Fig. 6

Computer plot of the positive part of the transmittance T(x) of one unit cell of a 1-D, contact screen vs x, where T(x) is give by Eq. (1).

Fig. 7
Fig. 7

Computer plot of the theoretically calculated Fourier transform of the positive part of the function T(x) of Fig. 6 vs spatial frequencies.

Fig. 8
Fig. 8

Computer plot of the discrete-valued approximation of the positive part of the transmittance T(x) of one unit cell of a 1-D contact screen vs x, where T(x) is given by Eq. (1).

Fig. 9
Fig. 9

Computer plot of the theoretically calculated Fourier transform of the unit cell of Fig. 8 vs spatial frequencies.

Fig. 10
Fig. 10

Photomicrograph of a few unit cells of a specific 133-lpi l-D contact screen.

Fig. 11
Fig. 11

Fourier transform spatial spectrum of the 1-D screen as shown in Fig. 10.

Fig. 12
Fig. 12

Photomicrograph of a few unit cells of a 2-D contact screen that consists of superposition of the 1-D screen of Fig. 10 in two orthogonal directions.

Fig. 13
Fig. 13

Fourier transform spatial spectrum of the 2-D contact screen as shown in Fig. 12.

Fig. 14
Fig. 14

Photomicrograph of a few unit cells of a 2-D dichromated gelatin phase screen.

Fig. 15
Fig. 15

Aerial photograph of Huntsville, Ala.

Fig. 16
Fig. 16

Photomicrograph of the holographic matched filter.

Fig. 17
Fig. 17

Zero-order autocorrelation signal displaced on (a) a TV screen and (b) an oscilloscope.

Fig. 18
Fig. 18

Array of spectrum islands of the dichromated gelatin phase screen.

Fig. 19
Fig. 19

Photographs of various diffraction orders of autocorrelation signals displaced on an oscilloscope.

Tables (3)

Tables Icon

Table I Intensity Distribution of the Fourier Transform in Units of Microwatts of the Density-type Contact Screen

Tables Icon

Table II Intensity Distribution of the Fourier Transform In Units of Microwatts of a Phase Screen

Tables Icon

Table III Peak Voltage In Units of Millivolts of the Autocorrelation Signals of a Few Diffraction Orders of the Phase Screen

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( x ) = 0.2 + 0.4 cos ( 2 π x / X ) + 0.4 cos ( 4 π x / X ) ,
T ( x ) = 1 , 0 < x a / N = 0 , a / N < x a ,
E ( x ) = p τ i ,             ( i - 1 ) a / N x < i a / N ,
D ( x ) = γ log E ( x ) - D 0 ,

Metrics