Abstract

A new technique has been developed for determination of optical depths δa as low as 0.0005 for thin layers of absorbing materials or particles. The measurement involves optical amplification of the absorption and is not affected by the scattering properties of the absorber. This is accomplished by introducing the absorber into the virtually isotropic radiation field between two high-reflectance diffusing wafers and measuring the resultant attenuation of the transmitted light. The technique has been directed toward determination of the absorption coefficient of atmospheric aerosols in remote and relatively unpolluted locations. Provided appropriate collection filters and sampling conditions are used, the method can establish an absorption coefficient for the aerosol as low as 5 × 10−9 m−1 within a 10-h sampling period. A proportionally higher absorption coefficient requires proportionally less sample time. This paper discusses instrument design, the theoretical optical model, laboratory calibration, and a field test of the technique.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Report on the Study of Critical Environmental Problems (SCEP) (MIT Press, Cambridge, Mass., 1970), 319 pp.
  2. Report of the Study of Man’s Impact on Climate (SMIC) (MIT Press, Cambridge, Mass., 1971), 308 pp.
  3. “The GARP Climate Dynamics Sub Program,” in Report, Third Meeting of the JOC Board for the Climate Dynamics Sub Program, World Meteorological Organization, Geneva, 1979.
  4. R. J. Charlson, M. J. Pilat, J. Appl. Meteorol. 8, 1001 (1969).
    [CrossRef]
  5. J. H. Joseph, W. J. Wiscomb, J. Atmos. Sci. 33, 2452 (1976).
    [CrossRef]
  6. O. B. Toon, J. B. Pollack, J. Appl. Meteorol. 15, 225 (1976).
    [CrossRef]
  7. J. E. Hansen, A. A. Lacis, P. Lee, W. C. Wang, in Proceedings, Conference on Aerosols: Urban and Rural Characteristics, Source and Transport Studies (New York Academy of Sciences, New York, 1979).
  8. R. E. Weiss, A. P. Waggoner, “Optical Measurements of Airborne Soot in Urban Rural and Remote Locations Report,” in GM International Symposium on Particulate Carbon: Atmospheric Life Cycles (General Motors, Warren, Mich., 1980).
  9. T. P. Ackerman, O. B. Toon, Appl. Opt. 20, 3661 (1981).
    [CrossRef] [PubMed]
  10. H. Rosen, A. D. A. Hansen, L. Grendel, T. Novakov, Appl. Opt. 17, 3859 (1978).
    [CrossRef] [PubMed]
  11. H. Rosen, T. Novakov, B. A. Bodhaine, Atmos. Environ. 15, 1345 (1981).
    [CrossRef]
  12. L. A. Barrie, R. M. Hoff, S. M. Dagupatty, Atmos. Environ. 15, 1407 (1981).
    [CrossRef]
  13. B. Ottar, Atmos. Environ. 15, 1439 (1981).
    [CrossRef]
  14. J. Heintzenberg, “Size Segregated Particulate Elemental Carbon and Aerosol Light Absorption at Remote Arctic Locations,” Atmos. Environ. in press (1982).
  15. T. N. Carlson, Mon. Weather Rev. 107, 322 (1979).
    [CrossRef]
  16. J. M. Prospero, E. Bonati, J. Geophys. Res. 74, 3362 (1969).
    [CrossRef]
  17. G. E. Shaw, J. Appl. Meterol. 19, 1254 (1980).
    [CrossRef]
  18. M. Darzi, J. W. Winchester, J. Geophys. Res. (1981).
  19. S. G. Warren, W. J. Wiscomb, J. Atmos. Sci. 37, 2712 (1981).
  20. R. A. Duce, SCOPE Workshop on the Interaction of Biogeochemical Cycles, Orsindbro, Sweden, 25–30 May 1981.
  21. M. S. Sadler, Ph.D. Dissertation, U. Washington, Seattle (1979).
  22. R. E. Weiss, Ph.D. Dissertation, U. Washington, Seattle (1980).
  23. C. I. Lin, Ph.D. Dissertation, U. Washington, Seattle (1973).
  24. K. Fischer, Beitzräge zur Physik der Atmosphäre, 43, Band, 1970, S. 244–252.
  25. A. D. Clarke, Appl. Opt. 21, 3021 (1982).
    [CrossRef] [PubMed]
  26. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  27. N. C. Ahlquist, R. J. Charlson, J. Air Pollut. Control Assoc. 17, 467 (1967).
    [CrossRef] [PubMed]

1982 (1)

1981 (6)

T. P. Ackerman, O. B. Toon, Appl. Opt. 20, 3661 (1981).
[CrossRef] [PubMed]

H. Rosen, T. Novakov, B. A. Bodhaine, Atmos. Environ. 15, 1345 (1981).
[CrossRef]

L. A. Barrie, R. M. Hoff, S. M. Dagupatty, Atmos. Environ. 15, 1407 (1981).
[CrossRef]

B. Ottar, Atmos. Environ. 15, 1439 (1981).
[CrossRef]

M. Darzi, J. W. Winchester, J. Geophys. Res. (1981).

S. G. Warren, W. J. Wiscomb, J. Atmos. Sci. 37, 2712 (1981).

1980 (1)

G. E. Shaw, J. Appl. Meterol. 19, 1254 (1980).
[CrossRef]

1979 (1)

T. N. Carlson, Mon. Weather Rev. 107, 322 (1979).
[CrossRef]

1978 (1)

1976 (2)

J. H. Joseph, W. J. Wiscomb, J. Atmos. Sci. 33, 2452 (1976).
[CrossRef]

O. B. Toon, J. B. Pollack, J. Appl. Meteorol. 15, 225 (1976).
[CrossRef]

1969 (2)

R. J. Charlson, M. J. Pilat, J. Appl. Meteorol. 8, 1001 (1969).
[CrossRef]

J. M. Prospero, E. Bonati, J. Geophys. Res. 74, 3362 (1969).
[CrossRef]

1967 (1)

N. C. Ahlquist, R. J. Charlson, J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

Ackerman, T. P.

Ahlquist, N. C.

N. C. Ahlquist, R. J. Charlson, J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

Barrie, L. A.

L. A. Barrie, R. M. Hoff, S. M. Dagupatty, Atmos. Environ. 15, 1407 (1981).
[CrossRef]

Bodhaine, B. A.

H. Rosen, T. Novakov, B. A. Bodhaine, Atmos. Environ. 15, 1345 (1981).
[CrossRef]

Bonati, E.

J. M. Prospero, E. Bonati, J. Geophys. Res. 74, 3362 (1969).
[CrossRef]

Carlson, T. N.

T. N. Carlson, Mon. Weather Rev. 107, 322 (1979).
[CrossRef]

Charlson, R. J.

R. J. Charlson, M. J. Pilat, J. Appl. Meteorol. 8, 1001 (1969).
[CrossRef]

N. C. Ahlquist, R. J. Charlson, J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

Clarke, A. D.

Dagupatty, S. M.

L. A. Barrie, R. M. Hoff, S. M. Dagupatty, Atmos. Environ. 15, 1407 (1981).
[CrossRef]

Darzi, M.

M. Darzi, J. W. Winchester, J. Geophys. Res. (1981).

Duce, R. A.

R. A. Duce, SCOPE Workshop on the Interaction of Biogeochemical Cycles, Orsindbro, Sweden, 25–30 May 1981.

Fischer, K.

K. Fischer, Beitzräge zur Physik der Atmosphäre, 43, Band, 1970, S. 244–252.

Grendel, L.

Hansen, A. D. A.

Hansen, J. E.

J. E. Hansen, A. A. Lacis, P. Lee, W. C. Wang, in Proceedings, Conference on Aerosols: Urban and Rural Characteristics, Source and Transport Studies (New York Academy of Sciences, New York, 1979).

Heintzenberg, J.

J. Heintzenberg, “Size Segregated Particulate Elemental Carbon and Aerosol Light Absorption at Remote Arctic Locations,” Atmos. Environ. in press (1982).

Hoff, R. M.

L. A. Barrie, R. M. Hoff, S. M. Dagupatty, Atmos. Environ. 15, 1407 (1981).
[CrossRef]

Joseph, J. H.

J. H. Joseph, W. J. Wiscomb, J. Atmos. Sci. 33, 2452 (1976).
[CrossRef]

Lacis, A. A.

J. E. Hansen, A. A. Lacis, P. Lee, W. C. Wang, in Proceedings, Conference on Aerosols: Urban and Rural Characteristics, Source and Transport Studies (New York Academy of Sciences, New York, 1979).

Lee, P.

J. E. Hansen, A. A. Lacis, P. Lee, W. C. Wang, in Proceedings, Conference on Aerosols: Urban and Rural Characteristics, Source and Transport Studies (New York Academy of Sciences, New York, 1979).

Lin, C. I.

C. I. Lin, Ph.D. Dissertation, U. Washington, Seattle (1973).

Novakov, T.

H. Rosen, T. Novakov, B. A. Bodhaine, Atmos. Environ. 15, 1345 (1981).
[CrossRef]

H. Rosen, A. D. A. Hansen, L. Grendel, T. Novakov, Appl. Opt. 17, 3859 (1978).
[CrossRef] [PubMed]

Ottar, B.

B. Ottar, Atmos. Environ. 15, 1439 (1981).
[CrossRef]

Pilat, M. J.

R. J. Charlson, M. J. Pilat, J. Appl. Meteorol. 8, 1001 (1969).
[CrossRef]

Pollack, J. B.

O. B. Toon, J. B. Pollack, J. Appl. Meteorol. 15, 225 (1976).
[CrossRef]

Prospero, J. M.

J. M. Prospero, E. Bonati, J. Geophys. Res. 74, 3362 (1969).
[CrossRef]

Rosen, H.

H. Rosen, T. Novakov, B. A. Bodhaine, Atmos. Environ. 15, 1345 (1981).
[CrossRef]

H. Rosen, A. D. A. Hansen, L. Grendel, T. Novakov, Appl. Opt. 17, 3859 (1978).
[CrossRef] [PubMed]

Sadler, M. S.

M. S. Sadler, Ph.D. Dissertation, U. Washington, Seattle (1979).

Shaw, G. E.

G. E. Shaw, J. Appl. Meterol. 19, 1254 (1980).
[CrossRef]

Toon, O. B.

T. P. Ackerman, O. B. Toon, Appl. Opt. 20, 3661 (1981).
[CrossRef] [PubMed]

O. B. Toon, J. B. Pollack, J. Appl. Meteorol. 15, 225 (1976).
[CrossRef]

Waggoner, A. P.

R. E. Weiss, A. P. Waggoner, “Optical Measurements of Airborne Soot in Urban Rural and Remote Locations Report,” in GM International Symposium on Particulate Carbon: Atmospheric Life Cycles (General Motors, Warren, Mich., 1980).

Wang, W. C.

J. E. Hansen, A. A. Lacis, P. Lee, W. C. Wang, in Proceedings, Conference on Aerosols: Urban and Rural Characteristics, Source and Transport Studies (New York Academy of Sciences, New York, 1979).

Warren, S. G.

S. G. Warren, W. J. Wiscomb, J. Atmos. Sci. 37, 2712 (1981).

Weiss, R. E.

R. E. Weiss, Ph.D. Dissertation, U. Washington, Seattle (1980).

R. E. Weiss, A. P. Waggoner, “Optical Measurements of Airborne Soot in Urban Rural and Remote Locations Report,” in GM International Symposium on Particulate Carbon: Atmospheric Life Cycles (General Motors, Warren, Mich., 1980).

Winchester, J. W.

M. Darzi, J. W. Winchester, J. Geophys. Res. (1981).

Wiscomb, W. J.

S. G. Warren, W. J. Wiscomb, J. Atmos. Sci. 37, 2712 (1981).

J. H. Joseph, W. J. Wiscomb, J. Atmos. Sci. 33, 2452 (1976).
[CrossRef]

Appl. Opt. (3)

Atmos. Environ. (3)

H. Rosen, T. Novakov, B. A. Bodhaine, Atmos. Environ. 15, 1345 (1981).
[CrossRef]

L. A. Barrie, R. M. Hoff, S. M. Dagupatty, Atmos. Environ. 15, 1407 (1981).
[CrossRef]

B. Ottar, Atmos. Environ. 15, 1439 (1981).
[CrossRef]

Beitzräge zur Physik der Atmosphäre (1)

K. Fischer, Beitzräge zur Physik der Atmosphäre, 43, Band, 1970, S. 244–252.

J. Air Pollut. Control Assoc. (1)

N. C. Ahlquist, R. J. Charlson, J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

J. Appl. Meteorol. (2)

R. J. Charlson, M. J. Pilat, J. Appl. Meteorol. 8, 1001 (1969).
[CrossRef]

O. B. Toon, J. B. Pollack, J. Appl. Meteorol. 15, 225 (1976).
[CrossRef]

J. Appl. Meterol. (1)

G. E. Shaw, J. Appl. Meterol. 19, 1254 (1980).
[CrossRef]

J. Atmos. Sci. (2)

S. G. Warren, W. J. Wiscomb, J. Atmos. Sci. 37, 2712 (1981).

J. H. Joseph, W. J. Wiscomb, J. Atmos. Sci. 33, 2452 (1976).
[CrossRef]

J. Geophys. Res. (2)

J. M. Prospero, E. Bonati, J. Geophys. Res. 74, 3362 (1969).
[CrossRef]

M. Darzi, J. W. Winchester, J. Geophys. Res. (1981).

Mon. Weather Rev. (1)

T. N. Carlson, Mon. Weather Rev. 107, 322 (1979).
[CrossRef]

Other (11)

J. E. Hansen, A. A. Lacis, P. Lee, W. C. Wang, in Proceedings, Conference on Aerosols: Urban and Rural Characteristics, Source and Transport Studies (New York Academy of Sciences, New York, 1979).

R. E. Weiss, A. P. Waggoner, “Optical Measurements of Airborne Soot in Urban Rural and Remote Locations Report,” in GM International Symposium on Particulate Carbon: Atmospheric Life Cycles (General Motors, Warren, Mich., 1980).

R. A. Duce, SCOPE Workshop on the Interaction of Biogeochemical Cycles, Orsindbro, Sweden, 25–30 May 1981.

M. S. Sadler, Ph.D. Dissertation, U. Washington, Seattle (1979).

R. E. Weiss, Ph.D. Dissertation, U. Washington, Seattle (1980).

C. I. Lin, Ph.D. Dissertation, U. Washington, Seattle (1973).

Report on the Study of Critical Environmental Problems (SCEP) (MIT Press, Cambridge, Mass., 1970), 319 pp.

Report of the Study of Man’s Impact on Climate (SMIC) (MIT Press, Cambridge, Mass., 1971), 308 pp.

“The GARP Climate Dynamics Sub Program,” in Report, Third Meeting of the JOC Board for the Climate Dynamics Sub Program, World Meteorological Organization, Geneva, 1979.

J. Heintzenberg, “Size Segregated Particulate Elemental Carbon and Aerosol Light Absorption at Remote Arctic Locations,” Atmos. Environ. in press (1982).

M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of integrating sandwich instrumental design.

Fig. 2
Fig. 2

Illustration of intensity as a function and angle θ from the normal over a Lambert radiator incident upon and emerging from an absorbing layer of absorption optical depth δa.

Fig. 3
Fig. 3

Ratio of a Lambertian flux F1 transmittance to normal incident flux Fn transmittance through an absorbing layer as a function of layer absorbing optical depth δ. The dashed line represents the modeled linear fit over the range indicated.

Fig. 4
Fig. 4

Plot of modeled integrating sandwich light attenuation vs normal incidence light attenuation (ACTUAL) for an absorbing layer of particles.

Fig. 5
Fig. 5

Calibration curve for integrating sandwich using laboratory generated pyrolized benzene showing integrating sandwich attenuation vs absorbing layer optical depth (see text): ★, measured values for collection of 0.4-μm Nuclepore; - - -, modeled values for 0.4-μm Nuclepore filter; □, measured values for collection on Pallflex QAS 2500.

Fig. 6
Fig. 6

Measured integrating sandwich attenuation values for numbered samples from Hurricane Ridge Experiment (Table I). Measured values for Pallflex QAS 2500 filters Q are set on a curve for soot calibration (Fig. 6). Measured values for Nuclepore N are set on a modeled curve using a coverage factor F of 0.5. The shaded region represents uncertainty in coverage factor (dot boundary) and combined uncertainty in coverage factor and surface reflectance (dashed boundary) (see text).

Fig. 7
Fig. 7

Bottom, continuous σsp × 106 m−1 and sampling intervals — for Hurricane Ridge field test. Top, averages centered over sampling periods: ⛆, σsp × 106 m−1; ★, σap × 107 m−1 (values for quartz filter used for samples 3, 4, 6, and 7); □, σap/σsp × 100.

Tables (1)

Tables Icon

Table I Results of Hurricane Ridge Field Test Using Integrating Sandwich

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

L = 1 - exp ( - δ a p ) ;
R 3 ( L ) = R 2 ( 1 - L · F ) ;
R b ( L ) = R 1 + T n 2 R 3 ( 1 - R 2 ) ( 1 - R 1 ) ( 1 - T n 2 R 3 R 2 ) ,
T 0 ( L ) = ( 1 - L ) ( 1 - R 2 ) T n ( 1 - R 0 ) ( 1 - T n 2 R 3 R 2 ) ,
T 1 ( L ) = T 0 ( 1 - R b R s ) ,
R f ( L ) = ( 1 - L ) A R 1 + ( 1 - L ) 2 ( 1 - R 2 ) T n 2 R 2 ( 1 - R 1 ) ( 1 - T n 2 R 3 R 2 ) ,
I ( θ ) = I 0 cos θ .
d Φ ( θ ) = 2 π I ( θ ) sin θ d θ .
I ( θ ) = I 0 cos θ exp ( - δ a sec θ ) .
d Φ ( θ ) = 2 π I 0 cos θ sin θ exp ( - δ a p sec θ ) d θ .
Φ = 2 π I 0 1 exp ( - δ a p x ) x 3 d x .
F l = E n ( 1 - 0.196 δ a p ) ,
R f ( L ) = ( 1 - L ) 1.5 R 1 + ( 1 - L ) 2 ( 1 - R 2 ) T n 2 R 2 ( 1 - R 1 ) ( 1 - T n 2 R 3 R 2 ) .
R t ( L ) = R f + T 0 · T 1 · R s .
T ( L ) = T s T 1 ( 1 - R s ) + T s T 1 ( 1 - R s ) R s R t ( L ) + T s T 1 ( 1 - R s ) R s 2 R f 2 ( L ) ,
T ( L ) = T s T 1 ( 1 - R s ) 1 - R t ( L ) R s .
T ( L ) T ( L = 0 ) = T 1 ( L ) T 1 ( L = 0 ) · [ 1 - R t ( L = 0 ) R s ] [ 1 - R t ( L ) R s ] .
Δ I s / I 0 = 1 - T ( L ) T ( L = 0 ) .
Δ I a / I 0 = 1 - exp ( - δ a p ) .

Metrics