Abstract

A single-crystalline double-layered structure of a pure (80-μm)/doped (39-μm)/pure Bi12SiO20 (BSO) substrate was grown for the first time by a new liquid-phase epitaxial griowth to form an optical waveguide. The waveguide layer is BSO doped with CaCO3 (0.1 wt. %) and Ga2O3 (0.197 wt. %) and has a refractive index 0.07 % higher than the substrate. The optical absorption coefficients were decreased by more than 1 order of magnitude by doping with the elements Ca and Ga. The high-sensitive photoconductivity of pure BSO was also reduced. Using these unique properties, we have constructed a new type of optically controlled planar optical switch.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
    [CrossRef]
  2. Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
    [CrossRef]
  3. K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.
  4. A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
    [CrossRef]
  5. R. B. Lauer, J. Appl. Phys. 44, 2658 (1973).
  6. H. Hayashi, Y. Fujii, IEEE J. Quantum Electron. QE-14, 848 (1978).
    [CrossRef]
  7. A. Sommerfeld, Optics (Academic, New York, 1964), p. 160.

1980 (1)

Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
[CrossRef]

1978 (1)

H. Hayashi, Y. Fujii, IEEE J. Quantum Electron. QE-14, 848 (1978).
[CrossRef]

1973 (2)

A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
[CrossRef]

R. B. Lauer, J. Appl. Phys. 44, 2658 (1973).

1971 (1)

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Ballman, A. A.

A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
[CrossRef]

Brown, H.

A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
[CrossRef]

Fujii, Y.

H. Hayashi, Y. Fujii, IEEE J. Quantum Electron. QE-14, 848 (1978).
[CrossRef]

Goto, H.

Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
[CrossRef]

Hamasaki, Y.

Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
[CrossRef]

Hayashi, H.

H. Hayashi, Y. Fujii, IEEE J. Quantum Electron. QE-14, 848 (1978).
[CrossRef]

Hou, S. L.

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Katoh, M.

Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
[CrossRef]

Kuhara, Y.

K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.

Lauer, R. B.

R. B. Lauer, J. Appl. Phys. 44, 2658 (1973).

Martin, R. J.

A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
[CrossRef]

Oliver, D. S.

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, Optics (Academic, New York, 1964), p. 160.

Tada, K.

K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.

Takeuchi, S.

Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
[CrossRef]

Tien, P. K.

A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
[CrossRef]

Yamaguchi, G.

K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.

Yamashita, S.

K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.

Yoshida, K.

K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.

Appl. Phys. Lett. (1)

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Electron. Lett. (1)

Y. Hamasaki, H. Goto, M. Katoh, S. Takeuchi, Electron. Lett. 16, 460 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Hayashi, Y. Fujii, IEEE J. Quantum Electron. QE-14, 848 (1978).
[CrossRef]

J. Appl. Phys. (1)

R. B. Lauer, J. Appl. Phys. 44, 2658 (1973).

J. Cryst. Growth (1)

A. A. Ballman, H. Brown, P. K. Tien, R. J. Martin, J. Cryst. Growth 20, 251 (1973).
[CrossRef]

Other (2)

K. Tada, Y. Kuhara, G. Yamaguchi, S. Yamashita, K. Yoshida, in Technical Digest, Conference on Laser and Electrooptical Systems (Optical Society of America, Washington, D.C., 1978), paper TUCC4.

A. Sommerfeld, Optics (Academic, New York, 1964), p. 160.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the furnace for liquid-phase epitaxial growth of BSO.

Fig. 2
Fig. 2

Phase diagram of the Bi2O3–SiO2 system.

Fig. 3
Fig. 3

BSO epitaxial single-crystalline films.

Fig. 4
Fig. 4

Photograph of a cross section of double-layered epitaxial film (doped layer is 0.1-wt. % CaCO3 and 0.197-wt. % Ga2O3 doped BSO).

Fig. 5
Fig. 5

Schematic diagram of the double-layered ridge waveguide.

Fig. 6
Fig. 6

Absorption coefficients of pure and doped BSO.

Fig. 7
Fig. 7

Reciprocal of conductivity and wavelength of pure and doped BSO.

Fig. 8
Fig. 8

Schematic cross section of the optical switch and experimental apparatus.

Fig. 9
Fig. 9

Relative position of ξ and ζ to the crystal axis of the waveguide.

Fig. 10
Fig. 10

Internal strains observed at the interface of the epitaxial layer and the substrate.

Fig. 11
Fig. 11

Photographs of the guided beam with and without exciting light.

Fig. 12
Fig. 12

Near-field pattern of the guided beam.

Fig. 13
Fig. 13

Output beam intensity and applied voltage.

Fig. 14
Fig. 14

Calculated relation between the intensity of the output beam and voltage applied to the waveguiding layer.

Tables (1)

Tables Icon

Table I Optical and Electric Properties of BSO and Doped BSO

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ɛ x = ɛ + η ,             ɛ y = ɛ ,
I = [ cos 2 ( δ l 2 ) + ( 2 θ δ ) 2 sin 2 ( δ l 2 ) ] sin 2 ( ζ - ξ + K ) + ( ρ δ ) sin 2 ( δ l 2 ) cos 2 ( ζ + ξ ) , K = tan - 1 [ δ 2 θ cot ( δ l 2 ) ] .
ζ - ξ = θ l ± ( π / 2 ) .
I = [ cos ( δ l 2 ) sin ( θ l ) - ( 2 θ δ ) cos ( θ l ) ] 2 + ρ δ sin ( δ l 2 ) × cos ( ζ + ξ ) 2 .
D = ( ɛ x i γ 0 - i γ ɛ y 0 0 0 ɛ z ) E ,
γ = 2 ɛ / ω 2 μ θ ,
B = μ H curl E = - B / t curl H = D / t } .
( E H ) = ( E 0 H 0 ) exp [ i ( ω t - k z ) ] ,
{ [ ɛ x - ( k 2 / ω 2 μ ) ] i γ - i γ [ ɛ y - ( k 2 / ω 2 μ ) ] } ( E x E y ) = 0.
( k ± ) 2 = 1 2 ω 2 μ × [ ( ɛ x + ɛ y ) ± ( ɛ x - ɛ y ) 2 + 4 γ 2 ] .
( E x E y ) = A ( 1 - i / α ) exp [ i ( ω t - k + z ) ] ,
( E x E y ) = A ( 1 i α ) exp [ i ( ω t - k - z ) ] ,
α = - 2 γ { 2 ɛ x - [ ( ɛ x + ɛ y ) + ( ɛ x - ɛ y ) 2 + 4 γ 2 ] } .
( E x E y ) z = l = [ cos ( ϕ / 2 ) - i cos x sin ( ϕ / 2 ) - sin x sin ( ϕ / 2 ) sin x sin ( ϕ / 2 ) cos ( ϕ / 2 ) + i cos x sin ( ϕ / 2 ) ] ( E x E y ) z = 0 ,
ϕ = δ l ,             δ = k + - k - , cos x = ( 1 - α 2 ) / ( 1 + α 2 ) ,             sin x = 2 α / ( 1 + α 2 ) .
δ 2 = ω 2 μ ( 2 ɛ + η ) - 2 ω 2 μ ɛ 1 + ( η ɛ - γ 2 ɛ 2 ) ,
δ 2 = ω 2 μ ɛ ( γ 2 + η 2 4 ) ,
δ = ( 2 θ ) 2 + ( ρ / 2 ) 2 ,

Metrics