Abstract

The laser-induced fluorescence technique was investigated via detailed rate equation modeling of hydroxide in a simulated premixed atmospheric methane–air flame environment. The extent of deviation from the simple two-level model, due to buildup of population in the vibrational bath levels from quenching and vibrational exchange collisions, was addressed as were the effects of variation in the magnitude of the collisional energy exchange rate constants. Typical results show a breakdown in the two-level model on a nanosecond time scale and indicate that OH number density measurements with accuracies better than an order of magnitude will require (1) better information on detailed quenching rates and (2) laboratory measurements which address the time history of the fluorescent signal on a nanosecond time scale.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crosley, Ed., Laser Probes in Combustion Chemistry, ACS Symposium Series (American Chemical Society, Washington, D.C., 1980).
    [CrossRef]
  2. J. H. Bechtel, Appl. Opt. 18, 2100 (1979); C. Chan, J. W. Daily, Appl. Opt. 19, 1963 (1980); R. Cattolica, Appl. Opt. 20, 1156 (1981).
    [CrossRef] [PubMed]
  3. A. P. Baronavski, J. R. McDonald, Appl. Opt. 16, 1897 (1977); L. Pasternack, A. P. Baronavski, J. R. McDonald, J. Chem. Phys. 69, 4830 (1978); P. A. Bonczyk, J. A. Shirley, Combust. Flame 34, 253 (1979); D. Stepowski, M. J. Cottereau, Appl. Opt. 18, 354 (1979); J. H. Bechtel, R. E. Teets, Appl. Opt. 18, 4138 (1979).
    [CrossRef] [PubMed]
  4. J. W. Daily, Appl. Opt. 15, 955 (1976).
    [CrossRef] [PubMed]
  5. D. H. Campbell, AEDC TR-80-47 (1981).
  6. A. J. Kotlar, A. Gelb, D. R. Crosley, in Ref. 1, p. 137.
  7. D. R. Crosley, R. K. Lengel, J. Quant. Spectrosc. Radiat. Transfer 15, 579 (1975).
    [CrossRef]
  8. C. C. Wang, C. M. Huang, Phys. Rev. A 21, 1235 (1980).
    [CrossRef]
  9. K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).
  10. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
  11. K. Schofield, J. Phys. Chem. Ref. Data 8, 723 (1979).
    [CrossRef]
  12. L. D. Smoot, W. C. Hecker, G. A. Williams, Combust. Flame 26, 323 (1976).
    [CrossRef]
  13. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, N.J., 1971).

1980 (1)

C. C. Wang, C. M. Huang, Phys. Rev. A 21, 1235 (1980).
[CrossRef]

1979 (2)

1977 (1)

1976 (2)

J. W. Daily, Appl. Opt. 15, 955 (1976).
[CrossRef] [PubMed]

L. D. Smoot, W. C. Hecker, G. A. Williams, Combust. Flame 26, 323 (1976).
[CrossRef]

1975 (1)

D. R. Crosley, R. K. Lengel, J. Quant. Spectrosc. Radiat. Transfer 15, 579 (1975).
[CrossRef]

Baronavski, A. P.

Bechtel, J. H.

Campbell, D. H.

D. H. Campbell, AEDC TR-80-47 (1981).

Crosley, D. R.

D. R. Crosley, R. K. Lengel, J. Quant. Spectrosc. Radiat. Transfer 15, 579 (1975).
[CrossRef]

A. J. Kotlar, A. Gelb, D. R. Crosley, in Ref. 1, p. 137.

Daily, J. W.

Gear, C. W.

C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, N.J., 1971).

Gelb, A.

A. J. Kotlar, A. Gelb, D. R. Crosley, in Ref. 1, p. 137.

Hecker, W. C.

L. D. Smoot, W. C. Hecker, G. A. Williams, Combust. Flame 26, 323 (1976).
[CrossRef]

Herzberg, G.

K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

Herzfeld, K. F.

K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).

Huang, C. M.

C. C. Wang, C. M. Huang, Phys. Rev. A 21, 1235 (1980).
[CrossRef]

Huber, K. P.

K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

Kotlar, A. J.

A. J. Kotlar, A. Gelb, D. R. Crosley, in Ref. 1, p. 137.

Lengel, R. K.

D. R. Crosley, R. K. Lengel, J. Quant. Spectrosc. Radiat. Transfer 15, 579 (1975).
[CrossRef]

Litovitz, T. A.

K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).

McDonald, J. R.

Schofield, K.

K. Schofield, J. Phys. Chem. Ref. Data 8, 723 (1979).
[CrossRef]

Smoot, L. D.

L. D. Smoot, W. C. Hecker, G. A. Williams, Combust. Flame 26, 323 (1976).
[CrossRef]

Wang, C. C.

C. C. Wang, C. M. Huang, Phys. Rev. A 21, 1235 (1980).
[CrossRef]

Williams, G. A.

L. D. Smoot, W. C. Hecker, G. A. Williams, Combust. Flame 26, 323 (1976).
[CrossRef]

Appl. Opt. (3)

Combust. Flame (1)

L. D. Smoot, W. C. Hecker, G. A. Williams, Combust. Flame 26, 323 (1976).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

K. Schofield, J. Phys. Chem. Ref. Data 8, 723 (1979).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

D. R. Crosley, R. K. Lengel, J. Quant. Spectrosc. Radiat. Transfer 15, 579 (1975).
[CrossRef]

Phys. Rev. A (1)

C. C. Wang, C. M. Huang, Phys. Rev. A 21, 1235 (1980).
[CrossRef]

Other (6)

K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).

K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

D. H. Campbell, AEDC TR-80-47 (1981).

A. J. Kotlar, A. Gelb, D. R. Crosley, in Ref. 1, p. 137.

D. R. Crosley, Ed., Laser Probes in Combustion Chemistry, ACS Symposium Series (American Chemical Society, Washington, D.C., 1980).
[CrossRef]

C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, N.J., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of OH energy levels showing basic laser-induced fluorescence processes.

Fig. 2
Fig. 2

Laser-excited upper level number density time history normalized by two-level model prediction for standard conditions of 1 atm, 2000 K for 0 → 0 and 0 → 1 excitation.

Fig. 3
Fig. 3

Laser-coupled levels total number density and total bath levels number density time history for standard conditions of 1 atm, 2000 K for 0 → 0 and 0 → 1 excitation.

Fig. 4
Fig. 4

Laser-excited upper level number density time history normalized by two-level model prediction for three V-T rates and otherwise standard conditions for 0 → 0 excitation.

Fig. 5
Fig. 5

Laser-excited upper level number density time history normalized by two-level model prediction for three V-T rates and otherwise standard conditions for 0 → 1 excitation.

Fig. 6
Fig. 6

Laser-excited upper level number density time history normalized by two-level model prediction for 0 → 0 excitation, standard conditions, and two laser radiation densities.

Fig. 7
Fig. 7

Laser-excited upper level number density time history normalized by two-level model prediction for 0 → 1 excitation, standard conditions, and two laser radiation densities

Fig. 8
Fig. 8

Peak and steady-state laser-excited upper level number density vs laser radiation density.

Tables (10)

Tables Icon

Table I Einstein A Coefficients for OH A2+X2Π Vibrational Transitions

Tables Icon

Table II V–T Rate Constants for OH–M Collisionsa

Tables Icon

Table III Species Concentrations and Quenching Constants at Standard Conditions of 1 atm, 2000 K

Tables Icon

Table IV Computational Results: Comparison Between A Coefficient Based and Flat Quenching Distribution at Standard Conditionsa

Tables Icon

Table V Computational Results: Variation in Total Quenching Rate at Standard Conditions a

Tables Icon

Table VI Computational Results: Variation in V–T Rates at Standard Conditions a

Tables Icon

Table VII Computational Results: Variation of V–T Rate Distribution and Lower Electronic State V–T Rate Valuesa

Tables Icon

Table VIII Computational Results: Variation in Laser Radiation Density at Standard Conditionsa

Tables Icon

Table IX Computational Results: H2O Mole Fraction Variation at Standard Conditionsa

Tables Icon

Table X Computational Results: V–V Rate Effects at Standard Conditionsa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N 2 ( v 2 ) d t = N 1 ( v 1 ) B 12 ρ ν + v N 2 ( v ) [ k v 2 , v ; v 2 + 1 , v - 1 + k v 2 , v ; v 2 - 1 , v 2 + 1 ] + N T v k v v 2 - N 2 ( v 2 ) { B 21 ρ ν + v [ A ( v 2 , v ) + Q ( v 2 , v ) ] + N 2 ( v 2 ) [ k v 2 + 1 , v ; v 2 , v - 1 + k v 2 - 1 , v ; v 2 , v + 1 ] } .
Q ( v ) = N T i F i k i ,
Q ( v , v ) = A ( v , v ) A ( v ) Q ( v ) ,
Q ( v , v ) = Q ( v ) N ,

Metrics