Abstract

The N2O R(8) doublet of the 1110–0110 band at 7.8 μm was measured by a tunable diode laser spectrometer designed and assembled at Perkin-Elmer. The spectra were digitized and least-squares fitted to Voigt line profiles to yield N2O line parameters and a quantitative measure of instrument performance. Scans at various pressures produced consistent spectral line values: S0 = (0.1746 ± 0.0043)cm−2/atm at 300 K, αL(N2O − N2O) = (0.1066 ± 0.0041)cm−1/atm, αD = (1.194 ± 0.018) × 10−3 cm−1, and αL(N2O − N2) = (0.0870 ± 0.0015)cm−1/atm. A spectrum with several levels of synthetic noise added was used to verify the fitting algorithm’s stability. The spectrometer was shown to possess an excellent SNR (e.g., 900:1) and wave number precision (≤2 × 10−4 cm−1) for spectral scans with 0.1-sec time constant.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Poultney et al., J. Opt. Soc. Am. 71, 1584A (1981).
  2. G. N. Steinberg, Rev. Sci. Instrum. 50, 1622 (1979).
    [CrossRef] [PubMed]
  3. W. B. Olson, A. G. Maki, W. J. Lafferty, J. Phys. Chem. Ref. Data 10, 1065 (1981).
    [CrossRef]
  4. A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).
    [CrossRef]
  5. L. Rothman, Appl. Opt. 20, 791 (1981).
    [CrossRef] [PubMed]
  6. G. D. T. Tejwani, P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 11, 1659 (1971).
    [CrossRef]
  7. R. A. Toth, J. Mol. Spectrosc. 40, 605 (1971).
    [CrossRef]
  8. N. Lacome, A. Levy, J. Mol. Spectrosc. 85, 205 (1981).
    [CrossRef]
  9. J. S. Margolis, J. Quant. Spectrosc. Radiat. Transfer 12, 751 (1972).
    [CrossRef]
  10. W. G. Planet, G. L. Tettemer, J. S. Knoll, J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
    [CrossRef]

1981 (4)

S. Poultney et al., J. Opt. Soc. Am. 71, 1584A (1981).

W. B. Olson, A. G. Maki, W. J. Lafferty, J. Phys. Chem. Ref. Data 10, 1065 (1981).
[CrossRef]

L. Rothman, Appl. Opt. 20, 791 (1981).
[CrossRef] [PubMed]

N. Lacome, A. Levy, J. Mol. Spectrosc. 85, 205 (1981).
[CrossRef]

1979 (1)

G. N. Steinberg, Rev. Sci. Instrum. 50, 1622 (1979).
[CrossRef] [PubMed]

1978 (2)

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).
[CrossRef]

W. G. Planet, G. L. Tettemer, J. S. Knoll, J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[CrossRef]

1972 (1)

J. S. Margolis, J. Quant. Spectrosc. Radiat. Transfer 12, 751 (1972).
[CrossRef]

1971 (2)

G. D. T. Tejwani, P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 11, 1659 (1971).
[CrossRef]

R. A. Toth, J. Mol. Spectrosc. 40, 605 (1971).
[CrossRef]

Armstrong, B. H.

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).
[CrossRef]

Hui, A. K.

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).
[CrossRef]

Knoll, J. S.

W. G. Planet, G. L. Tettemer, J. S. Knoll, J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[CrossRef]

Lacome, N.

N. Lacome, A. Levy, J. Mol. Spectrosc. 85, 205 (1981).
[CrossRef]

Lafferty, W. J.

W. B. Olson, A. G. Maki, W. J. Lafferty, J. Phys. Chem. Ref. Data 10, 1065 (1981).
[CrossRef]

Levy, A.

N. Lacome, A. Levy, J. Mol. Spectrosc. 85, 205 (1981).
[CrossRef]

Maki, A. G.

W. B. Olson, A. G. Maki, W. J. Lafferty, J. Phys. Chem. Ref. Data 10, 1065 (1981).
[CrossRef]

Margolis, J. S.

J. S. Margolis, J. Quant. Spectrosc. Radiat. Transfer 12, 751 (1972).
[CrossRef]

Olson, W. B.

W. B. Olson, A. G. Maki, W. J. Lafferty, J. Phys. Chem. Ref. Data 10, 1065 (1981).
[CrossRef]

Planet, W. G.

W. G. Planet, G. L. Tettemer, J. S. Knoll, J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[CrossRef]

Poultney, S.

S. Poultney et al., J. Opt. Soc. Am. 71, 1584A (1981).

Rothman, L.

Steinberg, G. N.

G. N. Steinberg, Rev. Sci. Instrum. 50, 1622 (1979).
[CrossRef] [PubMed]

Tejwani, G. D. T.

G. D. T. Tejwani, P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 11, 1659 (1971).
[CrossRef]

Tettemer, G. L.

W. G. Planet, G. L. Tettemer, J. S. Knoll, J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[CrossRef]

Toth, R. A.

R. A. Toth, J. Mol. Spectrosc. 40, 605 (1971).
[CrossRef]

Varanasi, P.

G. D. T. Tejwani, P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 11, 1659 (1971).
[CrossRef]

Wray, A. A.

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).
[CrossRef]

Appl. Opt. (1)

J. Mol. Spectrosc. (2)

R. A. Toth, J. Mol. Spectrosc. 40, 605 (1971).
[CrossRef]

N. Lacome, A. Levy, J. Mol. Spectrosc. 85, 205 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

S. Poultney et al., J. Opt. Soc. Am. 71, 1584A (1981).

J. Phys. Chem. Ref. Data (1)

W. B. Olson, A. G. Maki, W. J. Lafferty, J. Phys. Chem. Ref. Data 10, 1065 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (4)

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).
[CrossRef]

J. S. Margolis, J. Quant. Spectrosc. Radiat. Transfer 12, 751 (1972).
[CrossRef]

W. G. Planet, G. L. Tettemer, J. S. Knoll, J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[CrossRef]

G. D. T. Tejwani, P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 11, 1659 (1971).
[CrossRef]

Rev. Sci. Instrum. (1)

G. N. Steinberg, Rev. Sci. Instrum. 50, 1622 (1979).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of Perkin-Elmer tunable diode laser spectrometer.

Fig. 2
Fig. 2

Measured line shapes of the R(8) doublet of the 1110–0110 band of N2O at various pressures: (1) 0.2 Torr; (2) 0.5 Torr; (3) 1.0 Torr; (4) 2.0 Torr; (5) 5.0 Torr; (6) 10.0 Torr; (7) 20.0 Torr. Also shown is a calibration etalon trace. Note the excellent SNR in the 5-min duration scans with 0.1-sec time constant.

Fig. 3
Fig. 3

Plot of N2O data scan of R(8) 1110–0110 band, P = 5 Torr; (a) fitted spectrum; (b) difference between the input and fitted spectrum. Frequency scale is in digitizer units.

Fig. 4
Fig. 4

Plot of N2O data scan at 10 Torr with synthetic noise added; (a) input spectrum, synthetic SNR = 20; (b) fitted spectrum.

Fig. 5
Fig. 5

Tunable diode laser frequency stability test as a function of time. TDL frequency is set at a half-height of R(16) 100–000 band as shown at left.

Tables (5)

Tables Icon

Table I Fitted Line Parameters in Digitizer Units (PN2O = 10 Torr) with Various Levels of Synthetic Noise Added

Tables Icon

Table II Best-Fit Value of Line Intensity and Linewidths of Self-Broadened N2O for the R(8) Line of the (1110–0110) Band

Tables Icon

Table III Comparison of N2O R(8) 1110–0110 Band Line intensity, Line Self-Broadening, and Doppler Width with Other Recent Works

Tables Icon

Table IV Best-Fit Value of Line Intensity and Linewidths for R(8) (1110–0110) Band with N2-Broadening and 2 Torr N2O Partial Pressure

Tables Icon

Table V Comparison of N2O R(8) 1110–0110 Band Line N2-Broadening Halfwidth with Other Recent Works (Unit in cm−1/atm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = i = 1 N [ Y obs ( ν i ) - Y calc ( ν i ) W i ] 2 × { 1 + 1 ( N - M ) × j = 1 M [ θ j - T j σ j ] 2 } ,
γ p = α L ( N 2 O - N 2 O ) P N 2 O + α L ( N 2 O - N 2 ) P N 2 ,

Metrics