Abstract

A hybrid hologram is constructed which combines the flexibility of a computer-generated hologram (CGH) with the high-diffraction efficiency of volume phase holograms. The new hologram is constructed by using a spatially filtered wave front from a conventional 246- × 256-cell CGH as the object wave for the recording of a volume hologram. Theoretical and experimental results show that simultaneous high-diffraction efficiency and reconstruction fidelity are possible.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lee, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1978), Vol. 16, Chap. 3.
    [CrossRef]
  2. W. J. Dallas, in The Computer in Optics Research, B. R. Frieden, Ed. (Springer, New York, 1980), Chap. 6.
  3. B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
    [CrossRef] [PubMed]
  4. Another technique to produce very high-efficiency holograms with moderate flexibility is to use partitioned holograms; see S. K. Case, P. R. Haugen, O. J. Lokberg, Appl. Opt. 20, 2670 (1981).
    [CrossRef] [PubMed]
  5. D. C. Chu, J. R. Fienup, J. W. Goodman, Appl. Opt. 12, 1386 (1973).
    [CrossRef] [PubMed]
  6. B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966).
    [CrossRef] [PubMed]
  7. A. W. Lohmann, D. P. Paris, Appl. Opt. 6, 1739 (1967).
    [CrossRef] [PubMed]
  8. S. Lowenthal, P. Chavel, Appl. Opt. 13, 718 (1974).
    [CrossRef] [PubMed]
  9. H. Bartelt, W. J. Dallas, A. W. Lohmann, Opt. Commun. 20, 50 (1977).
    [CrossRef]
  10. We also made hologram copies with focal power so that no additional lens was needed for hologram readout. This is another example of adding a large yet easily produced amount of information to a CGH via an optical system.
  11. K. Winick, J. Opt. Soc. Am. 72, 143 (1982).
    [CrossRef]
  12. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.
  13. S. K. Case, “Multiple Exposure Holography in Volume Materials,” Ph.D. Thesis, U. Michigan, Ann Arbor, (1976). Xerox U. Microfilms order 76-27, 461.
  14. R. A. Gabel, Appl. Opt. 14, 2252 (1974).
    [CrossRef]

1982 (1)

1981 (1)

1979 (1)

1977 (1)

H. Bartelt, W. J. Dallas, A. W. Lohmann, Opt. Commun. 20, 50 (1977).
[CrossRef]

1974 (2)

1973 (1)

1967 (1)

1966 (1)

Bartelt, H.

H. Bartelt, W. J. Dallas, A. W. Lohmann, Opt. Commun. 20, 50 (1977).
[CrossRef]

Brown, B. R.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

Case, S. K.

Another technique to produce very high-efficiency holograms with moderate flexibility is to use partitioned holograms; see S. K. Case, P. R. Haugen, O. J. Lokberg, Appl. Opt. 20, 2670 (1981).
[CrossRef] [PubMed]

S. K. Case, “Multiple Exposure Holography in Volume Materials,” Ph.D. Thesis, U. Michigan, Ann Arbor, (1976). Xerox U. Microfilms order 76-27, 461.

Chang, B. J.

Chavel, P.

Chu, D. C.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

Dallas, W. J.

H. Bartelt, W. J. Dallas, A. W. Lohmann, Opt. Commun. 20, 50 (1977).
[CrossRef]

W. J. Dallas, in The Computer in Optics Research, B. R. Frieden, Ed. (Springer, New York, 1980), Chap. 6.

Fienup, J. R.

Gabel, R. A.

Goodman, J. W.

Haugen, P. R.

Lee, W. H.

W. H. Lee, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1978), Vol. 16, Chap. 3.
[CrossRef]

Leonard, C. D.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

Lohmann, A. W.

Lokberg, O. J.

Lowenthal, S.

Paris, D. P.

Winick, K.

Appl. Opt. (7)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

H. Bartelt, W. J. Dallas, A. W. Lohmann, Opt. Commun. 20, 50 (1977).
[CrossRef]

Other (5)

We also made hologram copies with focal power so that no additional lens was needed for hologram readout. This is another example of adding a large yet easily produced amount of information to a CGH via an optical system.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

S. K. Case, “Multiple Exposure Holography in Volume Materials,” Ph.D. Thesis, U. Michigan, Ann Arbor, (1976). Xerox U. Microfilms order 76-27, 461.

W. H. Lee, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1978), Vol. 16, Chap. 3.
[CrossRef]

W. J. Dallas, in The Computer in Optics Research, B. R. Frieden, Ed. (Springer, New York, 1980), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of four cells of a Lohmann-type binary Fourier hologram.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Plot showing maximum possible irradiance diffraction efficiency as a function of amplitude beam ratio.

Fig. 4
Fig. 4

Theoretical amplitude diffraction efficiency vs object wave amplitude for several different beam ratios and exposures. These curves also represent transfer functions between output image amplitude Ai and recording object wave amplitude Ao.

Fig. 5
Fig. 5

Reconstruction from original CGH.

Fig. 6
Fig. 6

Image reconstruction from hybrid hologram copied with low BRA to obtain high D E ¯ I.

Fig. 7
Fig. 7

Image reconstruction from hybrid hologram copied with moderate BRA to obtain moderately high D E ¯ I and good fidelity. Note the large working field around the image and the very low noise.

Fig. 8
Fig. 8

Experimentally measured SNR vs hologram D E ¯ I with recording BRA as a parameter.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D E I = sin 2 ( k Δ n ) ,
Δ n α A o R A 0 2 + R 2 ,
D E I = sin 2 [ κ ( A o R A o 2 + R 2 ) ] ,
D E ¯ I = 0 1 sin 2 [ κ ( A o R A o 2 + R 2 ) ] d A o .
D E A = sin [ κ ( A o R A o 2 + R 2 ) ] .
A o R A o 2 + R 2 A o R .

Metrics