Abstract

A new apparatus that incorporates an integrating sphere is described, which enables the solar transmittance of test samples to be measured as a function of both angle of incidence and azimuth angle. This apparatus was developed to perform measurements on both planar and nonplanar samples of larger dimensions than can be accommodated in a spectrophotometer. Solar transmittance measurements from this apparatus are compared with those from a Gier & Dunkle spectrophotometer for a range of sample materials, and excellent agreement has been found. Errors in solar transmittance measurement may arise from changes in the integrating sphere entrance port reflectance due to placement and then the removal of the test sample from the port. A correction procedure is derived to take account of these errors and is applicable to all single-beam integrating spheres.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Sheklion, Appl. Sol. Energy USSR 3, 2, 68 (1967).
  2. O. H. Olson, Appl. Opt. 2, 109 (1963).
    [Crossref]
  3. P. Moon, J. Franklin Inst. 230, 583 (1940).
    [Crossref]
  4. British Standard: Aerospace Series, Specification for Reflection Reducing Coating of Instrument Windows and Lighting Wedges, British Standards Institution G.211 (Mar.1971).
  5. A. H. Taylor, J. Opt. Soc. Am. 4, 9 (1920).
    [Crossref]
  6. D. K. Edwards et al., J. Opt. Soc. Am. 51, 1279 (1961).
    [Crossref]

1967 (1)

A. V. Sheklion, Appl. Sol. Energy USSR 3, 2, 68 (1967).

1963 (1)

1961 (1)

1940 (1)

P. Moon, J. Franklin Inst. 230, 583 (1940).
[Crossref]

1920 (1)

Edwards, D. K.

Moon, P.

P. Moon, J. Franklin Inst. 230, 583 (1940).
[Crossref]

Olson, O. H.

Sheklion, A. V.

A. V. Sheklion, Appl. Sol. Energy USSR 3, 2, 68 (1967).

Taylor, A. H.

Appl. Opt. (1)

Appl. Sol. Energy USSR (1)

A. V. Sheklion, Appl. Sol. Energy USSR 3, 2, 68 (1967).

J. Franklin Inst. (1)

P. Moon, J. Franklin Inst. 230, 583 (1940).
[Crossref]

J. Opt. Soc. Am. (2)

Other (1)

British Standard: Aerospace Series, Specification for Reflection Reducing Coating of Instrument Windows and Lighting Wedges, British Standards Institution G.211 (Mar.1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Integrating sphere apparatus for measuring solar transmittance.

Fig. 2
Fig. 2

Comparison of the solar spectral irradiance with the lamp spectral irradiance.

Fig. 3
Fig. 3

Irradiance distributions across the entrance port: (top) north–south traverse; (bottom) east–west traverse.

Fig. 4
Fig. 4

Integrating sphere test configurations: (top) measurement of τs,θ; (bottom) measurement of ρs,h.

Fig. 5
Fig. 5

Spectral transmittance of three heat absorbing glasses.

Fig. 6
Fig. 6

Typical test results for nonplanar samples.

Tables (1)

Tables Icon

Table I Solar Transmittance of Planar Materials

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Φ τ s , θ = Φ τ s , θ ρ w , ϕ ϕ F D P ( 1 - ρ s , θ ) + Φ τ s , θ α w , ϕ + E A w α w , h + E A d ( 1 - ρ d , h ) + E A p ( 1 - ρ s , h ) ,
E = Φ τ s , θ ( 1 - ρ w , ϕ ϕ F D P + ρ w , ϕ ϕ F D P ρ s , θ - α w , ϕ ) A w α w , h + A d - A d ρ d , h + A p - A p ρ s , h .
E 0 = Φ ( 1 - ρ w , ϕ ϕ F D P - α w , ϕ ) A w α w , h + A d - A d ρ d , h + A p .
E E 0 = τ s , θ 1 + ρ w , ϕ ϕ F D P ρ s , θ 1 - ρ w , ϕ ϕ F D P - α w , ϕ 1 - A p ρ s , h A w α w , h + A d - A d ρ d , h + A p .
α w , ϕ = α w , h ,             ρ w , ϕ ϕ = ρ w , h ,             and ρ w , h = 1 - α w , h ,
τ s , θ = E E 0 1 - A p ρ s , h A w α w , h + A d - A d ρ d , h + A p 1 + F D P ρ s , θ 1 - F D P .
τ s = E E 0 1 - 0.3881 ρ s , h 1 + 0.0381 ρ s , θ .
ρ s , θ = ρ s , h .
τ s , θ = E E 0 1 - 0.3881 ρ s , h 1 - 0.0381 ρ s , h .
Φ = Φ ρ w , h F D S ( 1 - ρ s , θ ) + Φ ρ w , h F D P + Φ α w , h + E A w α w , h + E A p + E A s ( 1 - ρ s , h ) + E A d ( 1 - ρ d , h ) .
E = Φ ( 1 - ρ w , h F D S + ρ w , h F D S ρ s , θ - ρ w , h F D P - α w , h ) A w α w , h + A p + A s - A s ρ s , h + A d - A d ρ d , h .
E 0 = Φ ( 1 - ρ w , h F D S - ρ w , h F D P - α w , h ) A w α w , h + A p + A s + A d - A d ρ d , h .
E E 0 = 1 + F D S ρ s , h 1 - F D S - F D P 1 - A s ρ s , h A w α w , h + A p + A s + A d - A d ρ d , h .
E E 0 = 1 + 0.0110 ρ s , h 1 - 0.1481 ρ s , h ,
ρ s , h = ( E / E 0 ) - 1 0.0110 + 0.1481 ( E / E 0 ) .

Metrics