Abstract

A systematic program of observing atmospheric backscatter β profiles from 4 to 16-km above sea level is described. Initial monthly averages indicating a lognormal distribution are presented. Cirrus prevalence, volcanic layers in the stratosphere, diurnal effects, convection, calibration, and absorption effects are discussed as well.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).
  2. M. J. Post, Appl. Opt. 18, 2645 (1979).
    [CrossRef] [PubMed]
  3. R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo. ERL WPL-37 (U.S. Government Printing Office, Washington, D.C., 1978).
  4. M. J. Post, Opt. Lett. 2, 166 (1978).
    [CrossRef] [PubMed]
  5. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
    [CrossRef] [PubMed]
  6. F. O. Guiraud, J. Howard, D. C. Hogg, IEEE Trans. Geosci. Electron GE-17, 129 (1979).
    [CrossRef]
  7. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).
  8. R. Langley, Practical Statistics (Dover, New York, 1971), Chap. 4.
  9. J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U.P., London, 1957).
  10. R. E. Lopez, Mon. Weather Rev. 105, 865 (1977).
    [CrossRef]
  11. F. F. Hall, M. J. Post, R. A. Richter, G. M. Lerfald, “A lowtran v Subroutine for Cirrus Cloud Transmittance from Ultraviolet to Infrared,” NOAA Tech. Memo. ERL WPL- (U.S. Government Printing Office, Washington, D.C., 1982).
  12. R. A. Craig, The Upper Atmosphere Meteorology and Physics (Academic, New York, 1965), pp. 23–33.
  13. G. Hanel, Tellus 20, 371 (1968).
    [CrossRef]
  14. EOS Trans. Am. Geophys. Univ., 62, (19) 494 (1981).

1982 (1)

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

1981 (2)

1979 (2)

M. J. Post, Appl. Opt. 18, 2645 (1979).
[CrossRef] [PubMed]

F. O. Guiraud, J. Howard, D. C. Hogg, IEEE Trans. Geosci. Electron GE-17, 129 (1979).
[CrossRef]

1978 (1)

1977 (1)

R. E. Lopez, Mon. Weather Rev. 105, 865 (1977).
[CrossRef]

1968 (1)

G. Hanel, Tellus 20, 371 (1968).
[CrossRef]

Aitchison, J.

J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U.P., London, 1957).

Brown, J. A. C.

J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U.P., London, 1957).

Craig, R. A.

R. A. Craig, The Upper Atmosphere Meteorology and Physics (Academic, New York, 1965), pp. 23–33.

Guiraud, F. O.

F. O. Guiraud, J. Howard, D. C. Hogg, IEEE Trans. Geosci. Electron GE-17, 129 (1979).
[CrossRef]

Hall, F. F.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

F. F. Hall, M. J. Post, R. A. Richter, G. M. Lerfald, “A lowtran v Subroutine for Cirrus Cloud Transmittance from Ultraviolet to Infrared,” NOAA Tech. Memo. ERL WPL- (U.S. Government Printing Office, Washington, D.C., 1982).

Hanel, G.

G. Hanel, Tellus 20, 371 (1968).
[CrossRef]

Hardesty, R. M.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

Hogg, D. C.

F. O. Guiraud, J. Howard, D. C. Hogg, IEEE Trans. Geosci. Electron GE-17, 129 (1979).
[CrossRef]

Howard, J.

F. O. Guiraud, J. Howard, D. C. Hogg, IEEE Trans. Geosci. Electron GE-17, 129 (1979).
[CrossRef]

Huffaker, R. M.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Keeler, R. J.

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Korrell, J. A.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Langley, R.

R. Langley, Practical Statistics (Dover, New York, 1971), Chap. 4.

Lawrence, T. R.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Lerfald, G. M.

F. F. Hall, M. J. Post, R. A. Richter, G. M. Lerfald, “A lowtran v Subroutine for Cirrus Cloud Transmittance from Ultraviolet to Infrared,” NOAA Tech. Memo. ERL WPL- (U.S. Government Printing Office, Washington, D.C., 1982).

Lopez, R. E.

R. E. Lopez, Mon. Weather Rev. 105, 865 (1977).
[CrossRef]

Post, M. J.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

M. J. Post, Appl. Opt. 18, 2645 (1979).
[CrossRef] [PubMed]

M. J. Post, Opt. Lett. 2, 166 (1978).
[CrossRef] [PubMed]

F. F. Hall, M. J. Post, R. A. Richter, G. M. Lerfald, “A lowtran v Subroutine for Cirrus Cloud Transmittance from Ultraviolet to Infrared,” NOAA Tech. Memo. ERL WPL- (U.S. Government Printing Office, Washington, D.C., 1982).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Priestly, J. T.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

Richter, R. A.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

F. F. Hall, M. J. Post, R. A. Richter, G. M. Lerfald, “A lowtran v Subroutine for Cirrus Cloud Transmittance from Ultraviolet to Infrared,” NOAA Tech. Memo. ERL WPL- (U.S. Government Printing Office, Washington, D.C., 1982).

Appl. Opt. (2)

EOS Trans. Am. Geophys. Univ. (1)

EOS Trans. Am. Geophys. Univ., 62, (19) 494 (1981).

IEEE Trans. Geosci. Electron (1)

F. O. Guiraud, J. Howard, D. C. Hogg, IEEE Trans. Geosci. Electron GE-17, 129 (1979).
[CrossRef]

Mon. Weather Rev. (1)

R. E. Lopez, Mon. Weather Rev. 105, 865 (1977).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1982).

Tellus (1)

G. Hanel, Tellus 20, 371 (1968).
[CrossRef]

Other (6)

R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo. ERL WPL-37 (U.S. Government Printing Office, Washington, D.C., 1978).

F. F. Hall, M. J. Post, R. A. Richter, G. M. Lerfald, “A lowtran v Subroutine for Cirrus Cloud Transmittance from Ultraviolet to Infrared,” NOAA Tech. Memo. ERL WPL- (U.S. Government Printing Office, Washington, D.C., 1982).

R. A. Craig, The Upper Atmosphere Meteorology and Physics (Academic, New York, 1965), pp. 23–33.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (U.S. GPO, Washington, D.C., 1980).

R. Langley, Practical Statistics (Dover, New York, 1971), Chap. 4.

J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U.P., London, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Incoherent averaging of coherent lidar returns from atmospheric aerosols to reduce both Rayleigh phasor noise and system noise (14 May 1981, Boulder, Colo.). We typically average 500 pulses before processing for β. Vertical scale is one-tenth of the system dynamic range. Cirrus thickness was determined to be 105 ± 15 m by deconvoluting the lidar pulse shape from the observed return.

Fig. 2
Fig. 2

Backscatter coefficient β profile for a single 500-pulse (50-sec) data run showing the effects of including truncation and absorption (solid line, corrected data) and ignoring it (dashed line, uncorrected data). Also depicted as a dotted line is the minimum detectable β level for 500 pulse averaging.

Fig. 3
Fig. 3

Histogram of backscattering coefficients for sixty-eight 500-pulse data runs late spring and summer 1981 at Boulder, Colo. Range gate is 1 km centered at 7-km ASL.

Fig. 4
Fig. 4

Cumulative probability of β for May–July 1981 at Boulder, Colo. The top data set (a) of seventy-five independent measurements for 4- km ASL indicates an approximate lognormal distribution, comparing logβ (left ordinate) with β (right ordinate) distributions. The lower data set (b) for 7-km ASL is a very good fit to a lognormal distribution.

Fig. 5
Fig. 5

Average β profiles for Boulder, Colo., June 1981, including and excluding data containing cirrus returns. Both linear-averaging (arithmetic mean) and log-averaging (geometric mean) are indicated. Compare with model profiles of Fig. 6. At each level standard deviations are approximately equal to the mean value.

Fig. 6
Fig. 6

Model profiles used by WPL in its Windsat studies. The mid-latitude summer model fits the average June profile excluding cirrus rather well.

Fig. 7
Fig. 7

Profiles taken on 13 June 1981 at Boulder before (11:17 MDT) and after (19:56 MDT) strong convection showing the precloud formation lifting condensation level, injection of particulates into the midtroposphere, and the anvil blowoff from a cumulonimbus cloud.

Fig. 8
Fig. 8

The 21-h stacked backscatter profiles for 22, 23 June 1981. Diurnal effects are discussed in the text.

Fig. 9
Fig. 9

Raw data (signal power vs altitude) for the strongest observed volcanic debris return. Aerosols are present to 10-km ASL, and debris is observed through a tenuous cirrus layer. Power scale is one-tenth of the system dynamic range.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR = K η P T A 1 A 2 A 3 A 4 A 5 a 2 π c τ β 8 h ν B R 2 ,

Metrics