Abstract

This paper reviews aspects of the rocket ozonesonde (ROCOZ) performance pertaining to the validation of satellite ozone sensing systems, particularly the backscattered ultraviolet (BUV) sensor. It is shown that while the BUV system relates cumulative vertical ozone to pressure, the ROCOZ can measure cumulative ozone as a function of radar altitude. As a consequence some method of relating atmospheric pressure and altitude is required, with a concomitant error introduced. A Monte Carlo simulation was performed to evaluate the contribution of scattered flux on the ROCOZ result. The scattered component always causes an underestimate in cumulative ozone that increases almost linearly with pressure and is only weakly dependent on the solar zenith angle. For most practical operating conditions, however, the error in cumulative ozone arising from the scattered flux is of the order of 1% or less.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
    [CrossRef]
  2. R. W. L. Thomas, A. C. Holland, Appl. Opt. 16, 613 (1977).
    [CrossRef] [PubMed]
  3. M. J. Geraci, J. K. Luers, J. Appl. Meteorol. 17, 1521 (1978).
    [CrossRef]
  4. A. L. Torres, A. R. Bandy, J. Geophys. Res. 83, 5501 (1978).
    [CrossRef]
  5. A. L. Torres, private communication.
  6. E. Hilsenrath, L. Seider, P. Goodman, J. Geophys. Res. 28, 6873 (1969).
    [CrossRef]
  7. A. J. Krueger, W. R. McBridge, “Rocket Ozonesonde (ROCOZ) Design and Development,” TP4512, Naval Weapons Center, China Lake (1968).
  8. A. C. Holland, R. W. L. Thomas, W. A. Pearce, Appl. Opt. 17, 2153 (1978).
    [CrossRef] [PubMed]
  9. A. J. Krueger, R. A. Minzner, J. Geophys. Res. 81, 4477 (1976).
    [CrossRef]
  10. R. S. Fraser, NASA-9SFC; private communication.
  11. R. W. L. Thomas, A. C. Holland, Appl. Opt. 16, 2581 (1977).
    [CrossRef] [PubMed]

1980 (1)

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

1978 (3)

M. J. Geraci, J. K. Luers, J. Appl. Meteorol. 17, 1521 (1978).
[CrossRef]

A. L. Torres, A. R. Bandy, J. Geophys. Res. 83, 5501 (1978).
[CrossRef]

A. C. Holland, R. W. L. Thomas, W. A. Pearce, Appl. Opt. 17, 2153 (1978).
[CrossRef] [PubMed]

1977 (2)

1976 (1)

A. J. Krueger, R. A. Minzner, J. Geophys. Res. 81, 4477 (1976).
[CrossRef]

1969 (1)

E. Hilsenrath, L. Seider, P. Goodman, J. Geophys. Res. 28, 6873 (1969).
[CrossRef]

Bandy, A. R.

A. L. Torres, A. R. Bandy, J. Geophys. Res. 83, 5501 (1978).
[CrossRef]

Fleig, A. J.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

Fraser, R. S.

R. S. Fraser, NASA-9SFC; private communication.

Geraci, M. J.

M. J. Geraci, J. K. Luers, J. Appl. Meteorol. 17, 1521 (1978).
[CrossRef]

Goodman, P.

E. Hilsenrath, L. Seider, P. Goodman, J. Geophys. Res. 28, 6873 (1969).
[CrossRef]

Guenther, B.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

Heath, D. F.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

Hilsenrath, E.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

E. Hilsenrath, L. Seider, P. Goodman, J. Geophys. Res. 28, 6873 (1969).
[CrossRef]

Holland, A. C.

Krueger, A. J.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

A. J. Krueger, R. A. Minzner, J. Geophys. Res. 81, 4477 (1976).
[CrossRef]

A. J. Krueger, W. R. McBridge, “Rocket Ozonesonde (ROCOZ) Design and Development,” TP4512, Naval Weapons Center, China Lake (1968).

Luers, J. K.

M. J. Geraci, J. K. Luers, J. Appl. Meteorol. 17, 1521 (1978).
[CrossRef]

McBridge, W. R.

A. J. Krueger, W. R. McBridge, “Rocket Ozonesonde (ROCOZ) Design and Development,” TP4512, Naval Weapons Center, China Lake (1968).

McPeters, R.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

Minzner, R. A.

A. J. Krueger, R. A. Minzner, J. Geophys. Res. 81, 4477 (1976).
[CrossRef]

Pearce, W. A.

Prabhakara, C.

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

Seider, L.

E. Hilsenrath, L. Seider, P. Goodman, J. Geophys. Res. 28, 6873 (1969).
[CrossRef]

Thomas, R. W. L.

Torres, A. L.

A. L. Torres, A. R. Bandy, J. Geophys. Res. 83, 5501 (1978).
[CrossRef]

A. L. Torres, private communication.

Appl. Opt. (3)

J. Appl. Meteorol. (1)

M. J. Geraci, J. K. Luers, J. Appl. Meteorol. 17, 1521 (1978).
[CrossRef]

J. Geophys. Res. (3)

A. L. Torres, A. R. Bandy, J. Geophys. Res. 83, 5501 (1978).
[CrossRef]

A. J. Krueger, R. A. Minzner, J. Geophys. Res. 81, 4477 (1976).
[CrossRef]

E. Hilsenrath, L. Seider, P. Goodman, J. Geophys. Res. 28, 6873 (1969).
[CrossRef]

Philos. Trans. R. Soc. London (1)

A. J. Krueger, B. Guenther, A. J. Fleig, D. F. Heath, E. Hilsenrath, R. McPeters, C. Prabhakara, Philos. Trans. R. Soc. London 296, 191 (1980).
[CrossRef]

Other (3)

A. J. Krueger, W. R. McBridge, “Rocket Ozonesonde (ROCOZ) Design and Development,” TP4512, Naval Weapons Center, China Lake (1968).

R. S. Fraser, NASA-9SFC; private communication.

A. L. Torres, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of principal radiative components measured by the BUV and ROCOZ systems.

Fig. 2
Fig. 2

Computed ROCOZ flux components as a function of altitude for the Krueger-Minzner midlatitude ozone model normalized to an incident flux of π normal to the solar direction.

Fig. 3
Fig. 3

Altitude ranges for which ROCOZ signals are between 5 and 90% of the extraterrestrial values.

Fig. 4
Fig. 4

Scattered contribution to ROCOZ flux measurements as fraction of total flux plotted against overhead Rayleigh optical depth for various solar zenith angles.

Fig. 5
Fig. 5

Underestimates in ROCOZ estimates of cumulative overhead ozone as function of pressure.

Fig. 6
Fig. 6

Schematic comparison of the information content of a 6-wavelength BUV data set and a single ROCOZ flight.

Tables (1)

Tables Icon

Table I Parameters Used in the Simulations

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I λ = I 0 λ exp ( α eff , λ u β λ m ) ,
ln I λ = ln I 0 λ α eff , λ u β λ m ,
u = α eff , λ 1 [ ln ( I 0 λ I λ ) β λ m ] .
δ u = 1 α eff , λ ( δ I λ I λ + δ I 0 λ I 0 λ u δ α eff , λ m δ β λ β λ δ m ) .
ρ = exp ( τ ) .
f λ = ( I λ D λ ) / I λ .
f λ = ( I λ D λ ) / I λ τ s 1.013 0.4465 ( sec θ 0 ) 1.096
1.013 ± 0.0014 0.4465 = 10 0.35014 ± 0.05 1.096 ± 0.0245 .
f c = ( I c D c ) / I c = 0.723 τ s 1.008 ( sec θ 0 ) 0.908 .
f c = 0.376 ( sec θ 0 ) 0.874 10 h / 16 ,
ln I c = ln I 0 c β c m ,
u = α eff , λ 1 ( ln I 0 λ I λ ln I 0 c I c β λ m + β c m ) .
δ u = 1 α eff , λ { δ I c I c δ I λ I λ } = α eff , λ 1 ( f c f λ ) .
τ s ( p ) = β λ p 1013 .
δ X = p α eff , λ 1 ( 6.753 × 10 4 β c 1.008 p 0.008 sec θ 0 0.092 4.028 × 10 4 × β λ 1.013 p 0.013 sec θ 0 0.096 ) .
δ X = 4.028 × 10 4 p 1.013 ( α λ α 0 ) 1 sec θ 0 0.096 ( β 0 1.013 β λ 1.013 ) .
X = [ α λ ( 1 + sec θ 0 ) ] 1 ,
P = P 0 exp ( Σ Mg Δ h RT ) .
Δ P P = Δ P 0 P 0 + Σ Δ h H ¯ Δ T ¯ T ¯ ,
H ¯ = R T ¯ M g .

Metrics