Abstract

A fog chamber, developed to support measurement of the performance of electrooptical devices in the presence of fog, is discussed. Rationale for the fog chamber concept is presented. Emphasis is placed on the theory of operation of the chamber, an optical method for assessing fog particle characteristics, and the optical properties of the different types of fog produced.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Chamber and transmissometer were built byE. Reisman, Ford Aerospace and Communications Corp., Newport Beach, Calif. 92663.
  2. D. G. Crowe, D. K. Cohen, E. L. Dereniak, Appl. Opt. 19, 1953 (1980).
    [CrossRef] [PubMed]
  3. H. L. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  4. R. F. Lutomirski, Appl. Opt. 17, 3915 (1978).
    [CrossRef] [PubMed]
  5. J. W. Fitzgerald, J. Atmos. Sci. 35, 1522 (1978).
    [CrossRef]
  6. See, for exampleH. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978).
    [CrossRef]
  7. R. R. Rogers, A Short Course in Cloud Physics (Pergamon, Oxford, 1979).
  8. Y. S. Sedunov, Physics of Drop Formation in the Atmosphere (Wiley, New York, 1974).
  9. D. A. Stewart, “Infrared and Submillimeter Extinction by Fog,” Technical Report TR-77-9, U.S. Army Missile Research and Development Command (1977).
  10. T. W. Alger, Appl. Opt. 18, 3494 (1979).
    [CrossRef] [PubMed]
  11. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  12. C. Tomasi, F. Tampieri, Appl. Opt. 15, 2906 (1976).
    [CrossRef] [PubMed]
  13. J. V. Dave, Rep. 320-3237, IBM Scientific Center, Palo Alto, Calif. (1968).
  14. A. G. Amelin, Theory of Fog Condensation (Israel Program for Scientific Translations, Jerusalem, 1967).

1980 (1)

1979 (1)

1978 (2)

R. F. Lutomirski, Appl. Opt. 17, 3915 (1978).
[CrossRef] [PubMed]

J. W. Fitzgerald, J. Atmos. Sci. 35, 1522 (1978).
[CrossRef]

1976 (1)

Alger, T. W.

Amelin, A. G.

A. G. Amelin, Theory of Fog Condensation (Israel Program for Scientific Translations, Jerusalem, 1967).

Cohen, D. K.

Crowe, D. G.

Dave, J. V.

J. V. Dave, Rep. 320-3237, IBM Scientific Center, Palo Alto, Calif. (1968).

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

Dereniak, E. L.

Fitzgerald, J. W.

J. W. Fitzgerald, J. Atmos. Sci. 35, 1522 (1978).
[CrossRef]

Klett, J. D.

See, for exampleH. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978).
[CrossRef]

Lutomirski, R. F.

Pruppacher, H. R.

See, for exampleH. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978).
[CrossRef]

Reisman, E.

Chamber and transmissometer were built byE. Reisman, Ford Aerospace and Communications Corp., Newport Beach, Calif. 92663.

Rogers, R. R.

R. R. Rogers, A Short Course in Cloud Physics (Pergamon, Oxford, 1979).

Sedunov, Y. S.

Y. S. Sedunov, Physics of Drop Formation in the Atmosphere (Wiley, New York, 1974).

Stewart, D. A.

D. A. Stewart, “Infrared and Submillimeter Extinction by Fog,” Technical Report TR-77-9, U.S. Army Missile Research and Development Command (1977).

Tampieri, F.

Tomasi, C.

van de Hulst, H. L.

H. L. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Appl. Opt. (4)

J. Atmos. Sci. (1)

J. W. Fitzgerald, J. Atmos. Sci. 35, 1522 (1978).
[CrossRef]

Other (9)

See, for exampleH. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978).
[CrossRef]

R. R. Rogers, A Short Course in Cloud Physics (Pergamon, Oxford, 1979).

Y. S. Sedunov, Physics of Drop Formation in the Atmosphere (Wiley, New York, 1974).

D. A. Stewart, “Infrared and Submillimeter Extinction by Fog,” Technical Report TR-77-9, U.S. Army Missile Research and Development Command (1977).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

J. V. Dave, Rep. 320-3237, IBM Scientific Center, Palo Alto, Calif. (1968).

A. G. Amelin, Theory of Fog Condensation (Israel Program for Scientific Translations, Jerusalem, 1967).

Chamber and transmissometer were built byE. Reisman, Ford Aerospace and Communications Corp., Newport Beach, Calif. 92663.

H. L. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic drawing of fog chamber.

Fig. 2
Fig. 2

Time development of mean particle size for a 3–6-μm fog.

Fig. 3
Fig. 3

Time development of particle number density for a 3–6-μm fog.

Fig. 4
Fig. 4

Typical particle size distribution for a 3–6-μm fog.

Fig. 5
Fig. 5

Theoretically calculated IR transmission based on determined fog particle size parameters: ×, measured values of transmission for a 3–6-μm fog and N ≅ 1300 #/cm3.

Fig. 6
Fig. 6

Time development of mean particle size for a 1-μm fog.

Fig. 7
Fig. 7

Time development of particle number density for a 1-μm fog.

Fig. 8
Fig. 8

Typical particle size distribution for a 1-μm fog.

Fig. 9
Fig. 9

Theoretically calculated IR transmission based on determined fog particle size parameters: ×, measured values of transmission for a 1-μm fog and N ≅ 12,000 #/cm3.

Fig. 10
Fig. 10

Time development of mean particle size for a 8–12-μm fog.

Fig. 11
Fig. 11

Time development of particle number density for a 8–12-μm fog.

Fig. 12
Fig. 12

Theoretically calculated IR transmission based on determined fog particle size parameters: ×, measured values of transmission for a 8–12-μm fog and N ≅ 250 #/cm3.

Fig. 13
Fig. 13

Typical particle size distribution for a 8–12-μm fog.

Fig. 14
Fig. 14

Composite calculated transmissions of the three major types of fog capable of being produced: A, 3–6-μm fog; B, 1-μm fog; C, 8–12-μm fog.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

τ = exp [ N β ( λ ) L ] ,
β ( λ ) = 0 n ( r ) π r 2 Q ext ( m , λ , r ) dr ,
MTF = exp { A L S 0 L [ 1 f s ( ρ ) ] } ,
A = N 0 n ( r ) σ a ( r ) dr , S 0 = N 0 n ( r ) σ s ( r ) dr , f s ( ρ ) = 2 π 0 drn ( r ) 0 π d Θ sin θ P T ( θ , r ) 0 1 J 0 ( k ρ u sin θ ) du ,
dr dt ( S 1 ) r ,
P w s exp ( α / T ) ,
I = I 0 exp [ β ext ( λ ) L ] ,
β ext ( λ ) = 0 Q ext ( m , λ , r ) π r 2 P ( r ) dr ,
P ( r ) = N γ Γ ( α + 1 γ ) ( α γ ) α + 1 / γ r α r c α + 1 exp [ ( α γ r c γ ) r γ ] ,
β ext ( λ ) = N γ Γ ( α + 1 γ ) ( α γ ) α + 1 / γ π r c α + 1 × 0 r 2 Q ext ( r , λ ) r α exp [ ( α γ r c γ ) r γ ] dr ,
N = i = 1 4 β calc ( γ i ) β meas ( λ i ) / i = 1 4 [ β calc ( λ i ) ] 2 ,
W = 0 ρ H 2 O ( 4 π r 3 3 ) P ( r ) dr .
W = 4 3 π N b ( 3 / γ ) Γ ( α + 4 γ ) Γ ( α + 1 γ ) ,

Metrics