Abstract

In this paper the application of an upconversion detector to pulsed CO2 lidar is investigated. In this device a nonlinear IR crystal would be used to convert 10-μm lidar radiation into the visible region for conventional detection with a photomultiplier tube. A pulsed CO2 lidar can be substantially improved with an upconversion detector configured for rejection of thermal background radiation using a narrowband filter for the upconverted signal or a cold filter front end. The sensitivity of the upconversion detector with the narrowband visible wavelength filter is estimated to be 2 orders of magnitude better than that of the usual direct detection diode. The cold filter can improve upconversion detection to nearly the signal-shot limit. These upconversion detectors are not limited by speckle noise as is a pulsed heterodyne detector.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, H. Kaeper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
    [CrossRef]
  2. W. Jantz, P. Koidl, Appl. Phys. Lett. 31, 99 (1977).
    [CrossRef]
  3. R. L. Byer, R. L. Herbst, in Nonlinear Infrared Generation, Vol. 16, Y. R. Shen, Ed. (Springer, New York, 1977), Chap. 3.
    [CrossRef]
  4. D. A. Kleinman, F. D. Boyd, J. Appl. Phys. 40, 546 (1968).
    [CrossRef]
  5. A. F. Milton, Appl. Opt. 11, 2311 (1972).
    [CrossRef] [PubMed]
  6. E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
    [CrossRef]
  7. K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  8. J. L. Bufton, R. W. Stewart, C. Weng, Appl. Opt. 18, 3363 (1979).
    [CrossRef] [PubMed]
  9. J. Warner, Opto-electronics 3, 37 (1971).
    [CrossRef]
  10. Y. C. See, S. Guha, J. Falk, Appl. Opt. 19, 1415 (1980).
    [CrossRef] [PubMed]
  11. J. Falk, J. M. Yarborough, Appl. Phys. Lett. 19, 68 (1971).
    [CrossRef]
  12. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).
  13. J. Falk, W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
    [CrossRef]
  14. P. Koidl, W. Jantz, in Ternary Compounds, 1977, Inst. Phys. Conf. Ser. No. 35, G. D. Holah, Ed. (Institute of Physics, London, 1977), pp. 89–95.
  15. G. H. Svits, in The Infrared Handbook, W. Wolfe, G. Zissis Eds. (U.S. GPO, Washington, D.C., 1978).
  16. A. Hirth, H. Fagot, Opt. Commun. 21, 318 (1977).
    [CrossRef]
  17. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).
  18. T. R. Lawrence et al., in Digest of Conference on Lasers and Electrooptics (Optical Society of America, Washington, D.C., 1981), paper WD3.
  19. W. Goodman, Proc. IEEE 53, 1688 (1965).
    [CrossRef]
  20. M. Elbaum, P. Diament, Appl. Opt. 15, 2268 (1976).
    [CrossRef] [PubMed]
  21. M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
    [CrossRef]
  22. H. Z. Cummins, H. L. Swinney, Progress in Optics, Vol. 8, E. Wolf, Ed. (North-Holland, Amsterdam, 1970).
    [CrossRef]

1980 (1)

1979 (2)

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

J. L. Bufton, R. W. Stewart, C. Weng, Appl. Opt. 18, 3363 (1979).
[CrossRef] [PubMed]

1978 (1)

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

1977 (2)

A. Hirth, H. Fagot, Opt. Commun. 21, 318 (1977).
[CrossRef]

W. Jantz, P. Koidl, Appl. Phys. Lett. 31, 99 (1977).
[CrossRef]

1976 (2)

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

M. Elbaum, P. Diament, Appl. Opt. 15, 2268 (1976).
[CrossRef] [PubMed]

1972 (2)

J. Falk, W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

A. F. Milton, Appl. Opt. 11, 2311 (1972).
[CrossRef] [PubMed]

1971 (3)

G. D. Boyd, H. Kaeper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

J. Warner, Opto-electronics 3, 37 (1971).
[CrossRef]

J. Falk, J. M. Yarborough, Appl. Phys. Lett. 19, 68 (1971).
[CrossRef]

1968 (1)

D. A. Kleinman, F. D. Boyd, J. Appl. Phys. 40, 546 (1968).
[CrossRef]

1965 (1)

W. Goodman, Proc. IEEE 53, 1688 (1965).
[CrossRef]

Asai, K.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Boyd, F. D.

D. A. Kleinman, F. D. Boyd, J. Appl. Phys. 40, 546 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. Kaeper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Bufton, J. L.

Byer, R. L.

R. L. Byer, R. L. Herbst, in Nonlinear Infrared Generation, Vol. 16, Y. R. Shen, Ed. (Springer, New York, 1977), Chap. 3.
[CrossRef]

Cummins, H. Z.

H. Z. Cummins, H. L. Swinney, Progress in Optics, Vol. 8, E. Wolf, Ed. (North-Holland, Amsterdam, 1970).
[CrossRef]

Diament, P.

Elbaum, M.

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

M. Elbaum, P. Diament, Appl. Opt. 15, 2268 (1976).
[CrossRef] [PubMed]

Fagot, H.

A. Hirth, H. Fagot, Opt. Commun. 21, 318 (1977).
[CrossRef]

Falk, J.

Y. C. See, S. Guha, J. Falk, Appl. Opt. 19, 1415 (1980).
[CrossRef] [PubMed]

J. Falk, W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

J. Falk, J. M. Yarborough, Appl. Phys. Lett. 19, 68 (1971).
[CrossRef]

Goodman, W.

W. Goodman, Proc. IEEE 53, 1688 (1965).
[CrossRef]

Guha, S.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Herbst, R. L.

R. L. Byer, R. L. Herbst, in Nonlinear Infrared Generation, Vol. 16, Y. R. Shen, Ed. (Springer, New York, 1977), Chap. 3.
[CrossRef]

Hirth, A.

A. Hirth, H. Fagot, Opt. Commun. 21, 318 (1977).
[CrossRef]

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jantz, W.

W. Jantz, P. Koidl, Appl. Phys. Lett. 31, 99 (1977).
[CrossRef]

P. Koidl, W. Jantz, in Ternary Compounds, 1977, Inst. Phys. Conf. Ser. No. 35, G. D. Holah, Ed. (Institute of Physics, London, 1977), pp. 89–95.

Kaeper, H.

G. D. Boyd, H. Kaeper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).

Kleinman, D. A.

D. A. Kleinman, F. D. Boyd, J. Appl. Phys. 40, 546 (1968).
[CrossRef]

Koidl, P.

W. Jantz, P. Koidl, Appl. Phys. Lett. 31, 99 (1977).
[CrossRef]

P. Koidl, W. Jantz, in Ternary Compounds, 1977, Inst. Phys. Conf. Ser. No. 35, G. D. Holah, Ed. (Institute of Physics, London, 1977), pp. 89–95.

Lawrence, T. R.

T. R. Lawrence et al., in Digest of Conference on Lasers and Electrooptics (Optical Society of America, Washington, D.C., 1981), paper WD3.

McFee, J. H.

G. D. Boyd, H. Kaeper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Midwinter, J. E.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Milton, A. F.

Murray, E. R.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

See, Y. C.

Stewart, R. W.

Svits, G. H.

G. H. Svits, in The Infrared Handbook, W. Wolfe, G. Zissis Eds. (U.S. GPO, Washington, D.C., 1978).

Swinney, H. L.

H. Z. Cummins, H. L. Swinney, Progress in Optics, Vol. 8, E. Wolf, Ed. (North-Holland, Amsterdam, 1970).
[CrossRef]

Teich, M. C.

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

Tiffany, W. B.

J. Falk, W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

Van der Laan, J. E.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Warner, J.

J. Warner, Opto-electronics 3, 37 (1971).
[CrossRef]

Weng, C.

Yarborough, J. M.

J. Falk, J. M. Yarborough, Appl. Phys. Lett. 19, 68 (1971).
[CrossRef]

Zernike, F.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Appl. Opt. (4)

Appl. Phys. Lett. (4)

J. Falk, J. M. Yarborough, Appl. Phys. Lett. 19, 68 (1971).
[CrossRef]

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

W. Jantz, P. Koidl, Appl. Phys. Lett. 31, 99 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. D. Boyd, H. Kaeper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

J. Appl. Phys. (2)

D. A. Kleinman, F. D. Boyd, J. Appl. Phys. 40, 546 (1968).
[CrossRef]

J. Falk, W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

Opt. Commun. (2)

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

A. Hirth, H. Fagot, Opt. Commun. 21, 318 (1977).
[CrossRef]

Opto-electronics (1)

J. Warner, Opto-electronics 3, 37 (1971).
[CrossRef]

Proc. IEEE (1)

W. Goodman, Proc. IEEE 53, 1688 (1965).
[CrossRef]

Other (7)

R. L. Byer, R. L. Herbst, in Nonlinear Infrared Generation, Vol. 16, Y. R. Shen, Ed. (Springer, New York, 1977), Chap. 3.
[CrossRef]

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).

T. R. Lawrence et al., in Digest of Conference on Lasers and Electrooptics (Optical Society of America, Washington, D.C., 1981), paper WD3.

H. Z. Cummins, H. L. Swinney, Progress in Optics, Vol. 8, E. Wolf, Ed. (North-Holland, Amsterdam, 1970).
[CrossRef]

P. Koidl, W. Jantz, in Ternary Compounds, 1977, Inst. Phys. Conf. Ser. No. 35, G. D. Holah, Ed. (Institute of Physics, London, 1977), pp. 89–95.

G. H. Svits, in The Infrared Handbook, W. Wolfe, G. Zissis Eds. (U.S. GPO, Washington, D.C., 1978).

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Practical upconversion detector for pulsed CO2 lidar.

Fig. 2
Fig. 2

Cold filter for upconversion.

Fig. 3
Fig. 3

Pulsed CO2 lidar optical system with a cold filter upconversion detector.

Fig. 4
Fig. 4

Signal-to-noise ratios for upconversion and heterodyne detection: —, upconversion (T/Tc = 103, NB = 22, ηup = 0.08); --- heterodyne (a) T / T c = 10 3, ηhet = 0.08; (b) T / T c = 10 3, ηhet = 1; (c) T / T c = 10 2, ηhet = 1.

Fig. 5
Fig. 5

Noise equivalent photons vs background photons for various detection schemes at 10 μm: —, Nne = 1/ηup + [1/ηup(NB + 1/4ηup)]1/2; --- (a) direct detection photodiode, D λ * = 5 × 10 10 cm-Hz 1 / 2 / W, η = 0.08; --- (b), (c), (d) upconversion detector, ηup = 0.08; --- (e), (f) heterodyne detector, ηhet = 0.08.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

SNR = N 1 1 / η u p ( N 1 + N B ) 1 / 2 ,
NEP = N n e · h ν 1 / T , N ne = 1 2 η up + [ 1 η up ( N B + 1 4 η up ) ] 1 / 2 .
P B h v 1 = ½ ϕ B Δ λ 1 Δ Ω 1 A 1 ,
Δ λ 1 = λ 1 2 L ( n d n d λ ) 1 | λ 3 λ 1 ,
Δ Ω 1 4 n 1 λ 1 / L ,
N B T = P B h ν 1 = 10 13 photons / sec .
NEP = h ν 1 η up 2 P B h ν 1 = 3 × 10 13 W / Hz 1 / 2 .
P B h ν 1 = ½ ϕ B Δ λ r Δ Ω r A r ,
P B h ν 1 = ½ ϕ B Δ λ 1 ( 1.2 ) 2 λ 1 2 .
N B T = P B h ν 1 = 10 7 photons / sec ,
SNR = N 1 / ( N 1 η up + N B η up + N 1 2 M ) 1 / 2 M = A r A c T T c .
SNR het = N 1 2 T η het T c + N 1 ( B IF T ) 1 / 2 , η het = η A c / A r for A r > A c and T T c ,
+ γ ( ρ , 0 ) d ρ ,
( N ne ) het = 2 η het T / T c ( T / T c ) 1 / 2 1 ,
( N ne ) het = ( 2 / η het ) ( T / T c ) 1 / 2 .

Metrics