Abstract

Shuttle lidar measurements of magnesium-ion (Mg+) number density in the ionosphere (80–500 km) have been numerically simulated. A set of recently defined system parameters are used to assess the system performance. These simulations take into account the saturation effect of atomic absorption due to the high intensity of the laser, which is seen to be important in making near-field or daytime measurements. When the saturation is important, a calibration procedure must be used to correct the systematic error introduced by this effect. Both the nadir- and zenith-viewing configurations have been considered because the altitude of the Shuttle was assumed to be 300 km. The background level in these two configurations is discussed, and we show that the background level for zenith-viewing with the assumed lidar system parameters is negligible. The calibration of the lidar system parameters by means of Rayleigh backscattering from atmospheric molecules in the stratosphere is examined. This method is shown to require extra care because of the wavelength used (2796 Å), which lies within a strong absorption band of ozone causing large transmission errors. The Shuttle lidar capability for Mg+ measurement is compared with the requirements for conducting scientific investigations in the thermosphere.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
    [CrossRef]
  2. C. G. Fesen, Ph.D. Thesis, U. Michigan (1981).We thank the reviewer of the present paper for this most recent information.
  3. E. V. Browell, Ed., “Shuttle Atmospheric Lidar Research Program—Final Report of Atmospheric Lidar Working Group,” NASA SP-433 (1979).
  4. S. Yeh, E. V. Browell, “Shuttle Lidar Resonance Fluorescence Investigations: I. Analysis of Na and K Measurements,” Appl. Opt. 21, (15June1982).
    [PubMed]
  5. See the discussions on saturation in Ref. 4.
  6. P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
    [PubMed]
  7. L. Elterman, “UV, Visible, and IR Attenuation for Altitude to 50 km, 1968,” AFCRL-68-0153 (1968).
  8. J. Laver, “Approach for Estimating Errors in Density Profiles,” NASA Tech. Memo 80076 (1979).
  9. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).
  10. J. E. Blamont, M. L. Chanin, G. Megie, Ann. Geophys. 4, 833 (1972).
  11. Standard U.S. Atmosphere (1976).
  12. J. G. Anderson, C. A. Barth, J. Geophys. Res. 76, 3723 (1971).
    [CrossRef]
  13. P. Lemaire, in Ultraviolet Stellar Spectra and Related Ground-Based Observations, L. Hauziaux, H. E. Butler, Eds. (Reidel, Dordrecht, Holland, 1970).
  14. N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
    [CrossRef]
  15. R. M. Goody, Atmospheric Radiation (Oxford U. P., London, 1964), p. 417.
  16. R. T. H. Collis, R. D. Hake, P. B. Russell, Opt. Eng. 17, 23 (1978), and references therein.
    [CrossRef]
  17. R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” NASA CR-3303 (1980).

1982 (1)

S. Yeh, E. V. Browell, “Shuttle Lidar Resonance Fluorescence Investigations: I. Analysis of Na and K Measurements,” Appl. Opt. 21, (15June1982).
[PubMed]

1979 (1)

1978 (1)

R. T. H. Collis, R. D. Hake, P. B. Russell, Opt. Eng. 17, 23 (1978), and references therein.
[CrossRef]

1974 (1)

J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
[CrossRef]

1972 (1)

J. E. Blamont, M. L. Chanin, G. Megie, Ann. Geophys. 4, 833 (1972).

1971 (1)

J. G. Anderson, C. A. Barth, J. Geophys. Res. 76, 3723 (1971).
[CrossRef]

1954 (1)

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Anderson, J. G.

J. G. Anderson, C. A. Barth, J. Geophys. Res. 76, 3723 (1971).
[CrossRef]

Barth, C. A.

J. G. Anderson, C. A. Barth, J. Geophys. Res. 76, 3723 (1971).
[CrossRef]

Blamont, J. E.

J. E. Blamont, M. L. Chanin, G. Megie, Ann. Geophys. 4, 833 (1972).

Browell, E. V.

S. Yeh, E. V. Browell, “Shuttle Lidar Resonance Fluorescence Investigations: I. Analysis of Na and K Measurements,” Appl. Opt. 21, (15June1982).
[PubMed]

Chanin, M. L.

J. E. Blamont, M. L. Chanin, G. Megie, Ann. Geophys. 4, 833 (1972).

Collis, R. T. H.

R. T. H. Collis, R. D. Hake, P. B. Russell, Opt. Eng. 17, 23 (1978), and references therein.
[CrossRef]

Elterman, L.

L. Elterman, “UV, Visible, and IR Attenuation for Altitude to 50 km, 1968,” AFCRL-68-0153 (1968).

Fesen, C. G.

C. G. Fesen, Ph.D. Thesis, U. Michigan (1981).We thank the reviewer of the present paper for this most recent information.

Fesen, C. L.

J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
[CrossRef]

Gerard, J. C.

J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
[CrossRef]

Goody, R. M.

R. M. Goody, Atmospheric Radiation (Oxford U. P., London, 1964), p. 417.

Grams, G. W.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).

Greco, R. V.

R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” NASA CR-3303 (1980).

Hake, R. D.

R. T. H. Collis, R. D. Hake, P. B. Russell, Opt. Eng. 17, 23 (1978), and references therein.
[CrossRef]

Hays, P. B.

J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
[CrossRef]

Johnson, F. S.

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Laver, J.

J. Laver, “Approach for Estimating Errors in Density Profiles,” NASA Tech. Memo 80076 (1979).

Lemaire, P.

P. Lemaire, in Ultraviolet Stellar Spectra and Related Ground-Based Observations, L. Hauziaux, H. E. Butler, Eds. (Reidel, Dordrecht, Holland, 1970).

Livingston, J. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).

McCormick, M. P.

Megie, G.

J. E. Blamont, M. L. Chanin, G. Megie, Ann. Geophys. 4, 833 (1972).

Moore, C. E.

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Morley, B. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).

Patterson, E. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).

Purcell, J. D.

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Rusch, D. W.

J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
[CrossRef]

Russell, P. B.

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

R. T. H. Collis, R. D. Hake, P. B. Russell, Opt. Eng. 17, 23 (1978), and references therein.
[CrossRef]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).

Swissler, T. J.

Tousey, R.

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Wilson, N.

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Yeh, S.

S. Yeh, E. V. Browell, “Shuttle Lidar Resonance Fluorescence Investigations: I. Analysis of Na and K Measurements,” Appl. Opt. 21, (15June1982).
[PubMed]

Ann. Geophys. (1)

J. E. Blamont, M. L. Chanin, G. Megie, Ann. Geophys. 4, 833 (1972).

Appl. Opt. (2)

S. Yeh, E. V. Browell, “Shuttle Lidar Resonance Fluorescence Investigations: I. Analysis of Na and K Measurements,” Appl. Opt. 21, (15June1982).
[PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

Astrophys. J. (1)

N. Wilson, R. Tousey, J. D. Purcell, F. S. Johnson, C. E. Moore, Astrophys. J. 119, 590 (1954).
[CrossRef]

Geo-phys J. Res. (1)

J. C. Gerard, D. W. Rusch, P. B. Hays, C. L. Fesen, Geo-phys J. Res. 84, 5249 (1974), and references therein.
[CrossRef]

J. Geophys. Res. (1)

J. G. Anderson, C. A. Barth, J. Geophys. Res. 76, 3723 (1971).
[CrossRef]

Opt. Eng. (1)

R. T. H. Collis, R. D. Hake, P. B. Russell, Opt. Eng. 17, 23 (1978), and references therein.
[CrossRef]

Other (10)

R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” NASA CR-3303 (1980).

R. M. Goody, Atmospheric Radiation (Oxford U. P., London, 1964), p. 417.

P. Lemaire, in Ultraviolet Stellar Spectra and Related Ground-Based Observations, L. Hauziaux, H. E. Butler, Eds. (Reidel, Dordrecht, Holland, 1970).

Standard U.S. Atmosphere (1976).

C. G. Fesen, Ph.D. Thesis, U. Michigan (1981).We thank the reviewer of the present paper for this most recent information.

E. V. Browell, Ed., “Shuttle Atmospheric Lidar Research Program—Final Report of Atmospheric Lidar Working Group,” NASA SP-433 (1979).

See the discussions on saturation in Ref. 4.

L. Elterman, “UV, Visible, and IR Attenuation for Altitude to 50 km, 1968,” AFCRL-68-0153 (1968).

J. Laver, “Approach for Estimating Errors in Density Profiles,” NASA Tech. Memo 80076 (1979).

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar—Final Report,” NASA contract NAS1-16052 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Mg+ ion number density profile taken from the recent Visible Airglow Experiment on Atmosphere Explorer E satellite.

Fig. 2
Fig. 2

Signal measurement errors and the saturation factors vs the laser beam divergence for the zenith-viewing configuration at two measurement altitudes (310 and 450 km). Notice the difference in scales for these two measurement altitudes.

Fig. 3
Fig. 3

Signal measurement errors and the saturation factors vs the laser beam divergence for the nadir-viewing configuration at three measurement altitudes (290, 150, and 110 km). Notice that different scales are used for the three cases.

Fig. 4
Fig. 4

Saturation factors for daytime and nighttime measurements from 100- to 500-km altitudes. Arrow on the vertical axis indicates the Shuttle altitude at 300 km.

Fig. 5
Fig. 5

Lidar return signal level and its one-standard deviation uncertainties for a vertical range bin size of 1 km and 10 laser shots in the nighttime. Arrow indicates the Shuttle altitude at 300 km.

Fig. 6
Fig. 6

Signal level and its one-standard deviation uncertainties for a vertical range bin size of 1 km and 10 laser shots in the daytime. Arrow indicates the Shuttle altitude at 300 km.

Fig. 7
Fig. 7

Number density error across the region of 100–500 km in the nighttime. The Mg+ profile model given in Fig. 1 was assumed. Arrow indicates Shuttle altitude.

Fig. 8
Fig. 8

Number density error across the region of 100–500 km in the daytime. The Mg+ profile model given Fig. 1 was assumed. Arrow indicates Shuttle altitude.

Fig. 9
Fig. 9

Vertical and horizontal resolution trade off for Mg+ measurements. A measurement error of 10% is assumed.

Fig. 10
Fig. 10

Vertical–horizontal resolution trade off for Mg+ measurements. A measurement uncertainty of 50%, which includes a calibration uncertainty of 10%, is assumed.

Tables (3)

Tables Icon

Table I Assumed Shuttle Lidar System Parameters

Tables Icon

Table II Altitude Dependence of Mg+ Doppler Width and Effective Absorption Cross Section

Tables Icon

Table III Parameters for Measurements of Mg+ at Various Altitudes

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P s = K s Δ z ( z L z ) 2 exp ( 2 τ ) ( β 0 + n σ eff ) ,
| z z L α tot ( z ) d z | ( α tot is the total extinction coefficient at altitude z ) ;
n = 1 σ eff [ P s ( z L z ) 2 K s Δ z exp ( 2 τ ) β 0 ] .
n = 1 σ eff [ P Q β 0 c β 0 ] ,
( δ n n ) 2 = ( δ σ eff σ eff ) 2 + [ ( δ P P ) 2 + ( δ Q Q ) 2 + ( δ β 0 c β 0 c ) 2 ] × ( 1 + β 0 n σ eff ) 2 + ( δ β 0 β 0 ) 2 ( β 0 n σ eff ) 2 .
δ Q Q = 2 { [ δ τ A ( z , z c ) ] 2 + [ δ τ M ( z , z c ) ] 2 + [ δ τ 0 3 ( z , z c ) ] 2 } 1 / 2 ,
δ τ 0 3 ( z , z c ) = 0.2 τ 0 3 ( z , z c ) , δ τ A ( z , z c ) = 0.5 τ A ( z , z c ) , δ τ M ( z , z c ) = 0.1 τ M ( z , z c ) ,
I i = 1 4 π g i N μ ,
g 1 / 2 , 1 / 2 = 0.037 photons / sec at 2803 Å , g 1 / 2 , 2 / 3 = 0.091 photons / sec at 2796 Å ,
λ hc cos θ W ( λ ) 0 z L [ 1 + cos 2 θ 2 f M ( z ) + ϕ ( θ ) f A ( z ) ] × exp [ sec θ z α tot ( z ) d z z z L α tot ( z ) d z ] d z

Metrics