Abstract

Analysis shows that the isolation inherent in acoustooptic modulators is impaired if the acoustic wave is partially retroreflected. This effect generates additional spectral components in both the deflected and the retroreflected light beam. The theoretical findings were confirmed by experiments at 10.6 μm, where an optical isolation of 40 dB was measured for a device with 23% deflection efficiency.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang, IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
    [CrossRef]
  2. R. G. Smith, IEEE J. Quantum Electron. QE-9, 545 (1973).
    [CrossRef]
  3. L. J. Aplet, J. W. Carson, Appl. Opt. 3, 544 (1964).
    [CrossRef]
  4. J. L. Davis, S. Ezekiel, Opt. Lett. 3, 505 (1981).
    [CrossRef]
  5. N. Brown, Appl. Opt. 20, 3711 (1981).
    [CrossRef] [PubMed]
  6. T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).
  7. A. Korpel, Proc. IEEE 69, 48 (1981).
    [CrossRef]
  8. E. H. Young, Shi-Kay Yao, Proc. IEEE 69, 54 (1981).
    [CrossRef]
  9. H. Eklund et al., Opt. Quantum Electron. 7, 73 (1975).
    [CrossRef]
  10. Model 1207 A-6, Isomet, Inc., Va.
  11. For an AOM working in the visible very low beam distortion has been reported in N. A. Massie, R. D. Nelson, Opt. Lett. 3, 46 (1978).
    [CrossRef] [PubMed]
  12. E. Skurnick et al., Proc. Soc. Photo-Opt. Instrum. Eng. 202, 56 (1979).

1981 (4)

J. L. Davis, S. Ezekiel, Opt. Lett. 3, 505 (1981).
[CrossRef]

N. Brown, Appl. Opt. 20, 3711 (1981).
[CrossRef] [PubMed]

A. Korpel, Proc. IEEE 69, 48 (1981).
[CrossRef]

E. H. Young, Shi-Kay Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

1979 (1)

E. Skurnick et al., Proc. Soc. Photo-Opt. Instrum. Eng. 202, 56 (1979).

1978 (1)

1976 (1)

I. C. Chang, IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
[CrossRef]

1975 (1)

H. Eklund et al., Opt. Quantum Electron. 7, 73 (1975).
[CrossRef]

1973 (1)

R. G. Smith, IEEE J. Quantum Electron. QE-9, 545 (1973).
[CrossRef]

1964 (1)

Aplet, L. J.

Brown, N.

Carson, J. W.

Chang, I. C.

I. C. Chang, IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
[CrossRef]

Davis, J. L.

J. L. Davis, S. Ezekiel, Opt. Lett. 3, 505 (1981).
[CrossRef]

Eklund, H.

H. Eklund et al., Opt. Quantum Electron. 7, 73 (1975).
[CrossRef]

Ezekiel, S.

J. L. Davis, S. Ezekiel, Opt. Lett. 3, 505 (1981).
[CrossRef]

Halldorsson, T.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Kleinbauer, R.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Korpel, A.

A. Korpel, Proc. IEEE 69, 48 (1981).
[CrossRef]

Krause, W.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Langerholc, N.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Massie, N. A.

Meissner, D.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Nagl, W.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Nelson, R. D.

Skurnick, E.

E. Skurnick et al., Proc. Soc. Photo-Opt. Instrum. Eng. 202, 56 (1979).

Smith, R. G.

R. G. Smith, IEEE J. Quantum Electron. QE-9, 545 (1973).
[CrossRef]

Yao, Shi-Kay

E. H. Young, Shi-Kay Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

Young, E. H.

E. H. Young, Shi-Kay Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

Zeckau, C.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. G. Smith, IEEE J. Quantum Electron. QE-9, 545 (1973).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, IEEE Trans. Sonics Ultrason. SU-23, 2 (1976).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

H. Eklund et al., Opt. Quantum Electron. 7, 73 (1975).
[CrossRef]

Proc. IEEE (2)

A. Korpel, Proc. IEEE 69, 48 (1981).
[CrossRef]

E. H. Young, Shi-Kay Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

E. Skurnick et al., Proc. Soc. Photo-Opt. Instrum. Eng. 202, 56 (1979).

Other (2)

Model 1207 A-6, Isomet, Inc., Va.

T. Halldorsson, R. Kleinbauer, W. Krause, N. Langerholc, D. Meissner, W. Nagl, C. Zeckau, ESTEC contract 3883/79 MBB GmbH, Munich, (31 Mar. 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Definition of beam components of light interacting with sound of frequency fA in an acoustooptic modulator. RR is the reflectivity of the ensuing optical setup.

Fig. 2
Fig. 2

Experimental setup for measurement of spectral purity of deflected beam.

Fig. 3
Fig. 3

Spectrum of detector signal resulting from heterodyning the deflected beam with a slightly offset reference beam (Δf = 10 MHz). Modulator drive power was 10 W, crystal temperature was 20° C.

Fig. 4
Fig. 4

Experimental setup for isolation measurement (BS…beam stops). To calibrate the signal levels observed at the output of the heterodyne receiver, beam stop BS1 was temporarily replaced by a near perfectly reflecting plane mirror.

Fig. 5
Fig. 5

Isolation measurement: spectrum of the heterodyne receiver's output signal from 0 to 100 MHz, with vertical scale 10 dB/div. A 0-dB reference level has been established as outlined in the text.

Fig. 6
Fig. 6

Isolation measurement: relative power of reflected radiation components in beam D with respect to power in beam A (compare Figs. 1 and 4). The component at fL − 2fA was below noise level.

Tables (3)

Tables Icon

Table I Frequencies and Relative Intensities of Beam Components Involved in Acoustooptic Interaction as Defined in Fig. 1a

Tables Icon

Table II Frequencies and Strengths of Detector Input and Output Signals In the Setup of Fig. 2, Version aa

Tables Icon

Table III Frequencies and Strengths of Detector Input and Output Signals in the Setup of Fig. 4a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η 2 R A 2 R R
η P 1 P 2
η P 1 P 2 R A
η 2 P 1 2 R A
η 2 R A 2 R R P 1
2 η 2 R A R R P 1 P 2
η 2 R R P 1 P 2
2 η 4 R A R R 2 P 1 2
η 2 R A 2 R R P 1 P 2
η 4 R A 2 R R 2 P 1 2

Metrics