Abstract

The principles of Fourier transformation are applied to photoacoustic imaging. Advantages are threefold: reduction of the power density at the sample; improvement of signal to noise ratio due to multiplexing advantage; and increase of spatial resolution by additional measurements with masks corresponding to higher overtones. The compatibility of Fourier with other multiplex transform techniques is discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, “Photoacoustics and Photoacoustic Spectroscopy,” in Chemical Analysis, Vol. 57, P. J. Elving, J. S. Winefordner, I. M. Kolthoff, Eds. (Wiley, New York, 1980).
  2. A. Rosencwaig, J. Appl. Phys. 51, 2210 (1980).
    [CrossRef]
  3. G. Busse, A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980).
    [CrossRef]
  4. H. Coufal, U. Möller, S. Schneider, Appl. Opt. 21, 116 (1982).
    [CrossRef] [PubMed]
  5. P. Griffith, Ed., Transform Techniques in Chemistry (Heyden, London, 1978).
    [CrossRef]
  6. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
    [CrossRef]
  7. H. Coufal, in Photoacoustics, Principles and Applications, H. Coufal, E. Lüscher, P. Korpiun, S. Schneider, R. Tilgner, Eds. (Vieweg, Wiesbaden, 1982).
  8. S. Schneider, U. Moller, H. Kost, H. Coufal, J. Photoacoust., to be published.
  9. H. Coufal, U. Moller, S. Schneider, in Photoacoustics, Principles and Applications, see Ref. 7.

1982 (1)

1980 (2)

A. Rosencwaig, J. Appl. Phys. 51, 2210 (1980).
[CrossRef]

G. Busse, A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980).
[CrossRef]

1976 (1)

A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Busse, G.

G. Busse, A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980).
[CrossRef]

Coufal, H.

H. Coufal, U. Möller, S. Schneider, Appl. Opt. 21, 116 (1982).
[CrossRef] [PubMed]

H. Coufal, in Photoacoustics, Principles and Applications, H. Coufal, E. Lüscher, P. Korpiun, S. Schneider, R. Tilgner, Eds. (Vieweg, Wiesbaden, 1982).

S. Schneider, U. Moller, H. Kost, H. Coufal, J. Photoacoust., to be published.

H. Coufal, U. Moller, S. Schneider, in Photoacoustics, Principles and Applications, see Ref. 7.

Gersho, A.

A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Kost, H.

S. Schneider, U. Moller, H. Kost, H. Coufal, J. Photoacoust., to be published.

Moller, U.

S. Schneider, U. Moller, H. Kost, H. Coufal, J. Photoacoust., to be published.

H. Coufal, U. Moller, S. Schneider, in Photoacoustics, Principles and Applications, see Ref. 7.

Möller, U.

Rosencwaig, A.

G. Busse, A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980).
[CrossRef]

A. Rosencwaig, J. Appl. Phys. 51, 2210 (1980).
[CrossRef]

A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

A. Rosencwaig, “Photoacoustics and Photoacoustic Spectroscopy,” in Chemical Analysis, Vol. 57, P. J. Elving, J. S. Winefordner, I. M. Kolthoff, Eds. (Wiley, New York, 1980).

Schneider, S.

H. Coufal, U. Möller, S. Schneider, Appl. Opt. 21, 116 (1982).
[CrossRef] [PubMed]

H. Coufal, U. Moller, S. Schneider, in Photoacoustics, Principles and Applications, see Ref. 7.

S. Schneider, U. Moller, H. Kost, H. Coufal, J. Photoacoust., to be published.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Busse, A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980).
[CrossRef]

J. Appl. Phys. (2)

A. Rosencwaig, J. Appl. Phys. 51, 2210 (1980).
[CrossRef]

A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Other (5)

H. Coufal, in Photoacoustics, Principles and Applications, H. Coufal, E. Lüscher, P. Korpiun, S. Schneider, R. Tilgner, Eds. (Vieweg, Wiesbaden, 1982).

S. Schneider, U. Moller, H. Kost, H. Coufal, J. Photoacoust., to be published.

H. Coufal, U. Moller, S. Schneider, in Photoacoustics, Principles and Applications, see Ref. 7.

A. Rosencwaig, “Photoacoustics and Photoacoustic Spectroscopy,” in Chemical Analysis, Vol. 57, P. J. Elving, J. S. Winefordner, I. M. Kolthoff, Eds. (Wiley, New York, 1980).

P. Griffith, Ed., Transform Techniques in Chemistry (Heyden, London, 1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Masks for the determination of Fourier components: (a) true sine mask; (b) approximation by a slit geometry; (c) approximation for a laterally homogeneous sample.

Fig. 2
Fig. 2

Schematic of the experiment.

Fig. 3
Fig. 3

Arrangement of aperture, mask (third overtone shown), and sample enclosed in a cell.

Fig. 4
Fig. 4

Images of a completely black sample: amplitude A for successively better approximations truncating the Fourier series at the indicated overtone m and phase ϕ for m = 6.

Fig. 5
Fig. 5

Amplitude A and phase ϕ of the image (m = 6) of one black stripe.

Fig. 6
Fig. 6

Amplitude A and phase ϕ of the image (m = 6) of one white stripe.

Fig. 7
Fig. 7

Amplitude A and phase ϕ of the image (m = 6) of one black triangle.

Fig. 8
Fig. 8

Amplitude A and phase ϕ of the image (m = 6) of two black stripes with different widths.

Fig. 9
Fig. 9

Amplitude A and phase ϕ of the image (m = 6) of a complex sample whose cross section is shown (for detail see text).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p m = n f m , n S ( x n )
P = F S ,
S ( x n ) = m f n , m 1 p m ,
S ( x ) = F 1 P .
f m , n = I ( x n ) [ 1 + sin ( k m x n ) ] / 2 ,
f m , n = I ( x n ) [ 1 + cos ( k m x n ) ] / 2 ,
f m , n = I 0 [ 1 + sin ( k m x n ) ] / 2 ,
f m , n = I 0 [ 1 + cos ( k m x n ) ] / 2.
f m , n = { I 0 , if f m , n > I 0 / 2 , 0 , if f m , n < I 0 / 2 , for all m .
f m , n = I 0 [ 1 + sin ( k m x n ) ] / 2 .
S ( x j ) = y 0 2 + i = 1 m [ y i sin ( 2 π i L x j ) + y i cos ( 2 π i L x j ) ] ,

Metrics