Abstract

The positions of maximum intensity in the beam cross section of transversely excited N2 lasers have been measured at different gas pressures for three types of laser channel. The results show that there is a nonuniformity in the population inversion in the interelectrode region, which is discussed in terms of ionizing waves of potential gradient.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Basting, F. P. Schäfer, B. Steyer, Optoelectronics 4, 43 (1972).
  2. B. Godard, IEEE J. Quantum Electron. QE-10, 147 (1974).
    [CrossRef]
  3. L. Allen, G. I. Peters, Phys. Lett. A 31, 95 (1970).
    [CrossRef]
  4. H. E. B. Anderson, R. C. Tobin, Phys. Scr. 9, 7 (1974).
    [CrossRef]
  5. L. B. Loeb, Science, 148, 1417 (1965).
    [CrossRef] [PubMed]
  6. J. P. Singh, S. N. Thakur, Indian J. Phys. 55, 422 (1981).
  7. J. P. Singh, S. N. Thakur, Res. Ind. 23, 227 (1978).
  8. A. M. Howatson, An Introduction to Gas Discharge (Pergamon, New York, 1976), p. 69.
  9. W. Pfeiffer, H. Fischer, Appl. Opt. 20, 2328 (1981).
    [CrossRef] [PubMed]
  10. H. Bauer, “Analyse des Durchbruchs im inhomogenen elektrischen Feld,” (in German) Ph.D. Thesis, TU Stuttgart, Germany (1979).
  11. L. B. Loeb, Basic Process of Gaseous Electronics.(U. California Press, Berkeley, 1975), p. 250.
  12. A. W. Ali, A. C. Kolb, A. D. Anderson, Appl. Opt. 6, 2115 (1967).
    [CrossRef] [PubMed]
  13. See Ref. 11, p. 677.

1981

J. P. Singh, S. N. Thakur, Indian J. Phys. 55, 422 (1981).

W. Pfeiffer, H. Fischer, Appl. Opt. 20, 2328 (1981).
[CrossRef] [PubMed]

1978

J. P. Singh, S. N. Thakur, Res. Ind. 23, 227 (1978).

1974

B. Godard, IEEE J. Quantum Electron. QE-10, 147 (1974).
[CrossRef]

H. E. B. Anderson, R. C. Tobin, Phys. Scr. 9, 7 (1974).
[CrossRef]

1972

D. Basting, F. P. Schäfer, B. Steyer, Optoelectronics 4, 43 (1972).

1970

L. Allen, G. I. Peters, Phys. Lett. A 31, 95 (1970).
[CrossRef]

1967

1965

L. B. Loeb, Science, 148, 1417 (1965).
[CrossRef] [PubMed]

Ali, A. W.

Allen, L.

L. Allen, G. I. Peters, Phys. Lett. A 31, 95 (1970).
[CrossRef]

Anderson, A. D.

Anderson, H. E. B.

H. E. B. Anderson, R. C. Tobin, Phys. Scr. 9, 7 (1974).
[CrossRef]

Basting, D.

D. Basting, F. P. Schäfer, B. Steyer, Optoelectronics 4, 43 (1972).

Bauer, H.

H. Bauer, “Analyse des Durchbruchs im inhomogenen elektrischen Feld,” (in German) Ph.D. Thesis, TU Stuttgart, Germany (1979).

Fischer, H.

Godard, B.

B. Godard, IEEE J. Quantum Electron. QE-10, 147 (1974).
[CrossRef]

Howatson, A. M.

A. M. Howatson, An Introduction to Gas Discharge (Pergamon, New York, 1976), p. 69.

Kolb, A. C.

Loeb, L. B.

L. B. Loeb, Science, 148, 1417 (1965).
[CrossRef] [PubMed]

L. B. Loeb, Basic Process of Gaseous Electronics.(U. California Press, Berkeley, 1975), p. 250.

Peters, G. I.

L. Allen, G. I. Peters, Phys. Lett. A 31, 95 (1970).
[CrossRef]

Pfeiffer, W.

Schäfer, F. P.

D. Basting, F. P. Schäfer, B. Steyer, Optoelectronics 4, 43 (1972).

Singh, J. P.

J. P. Singh, S. N. Thakur, Indian J. Phys. 55, 422 (1981).

J. P. Singh, S. N. Thakur, Res. Ind. 23, 227 (1978).

Steyer, B.

D. Basting, F. P. Schäfer, B. Steyer, Optoelectronics 4, 43 (1972).

Thakur, S. N.

J. P. Singh, S. N. Thakur, Indian J. Phys. 55, 422 (1981).

J. P. Singh, S. N. Thakur, Res. Ind. 23, 227 (1978).

Tobin, R. C.

H. E. B. Anderson, R. C. Tobin, Phys. Scr. 9, 7 (1974).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

B. Godard, IEEE J. Quantum Electron. QE-10, 147 (1974).
[CrossRef]

Indian J. Phys.

J. P. Singh, S. N. Thakur, Indian J. Phys. 55, 422 (1981).

Optoelectronics

D. Basting, F. P. Schäfer, B. Steyer, Optoelectronics 4, 43 (1972).

Phys. Lett. A

L. Allen, G. I. Peters, Phys. Lett. A 31, 95 (1970).
[CrossRef]

Phys. Scr.

H. E. B. Anderson, R. C. Tobin, Phys. Scr. 9, 7 (1974).
[CrossRef]

Res. Ind.

J. P. Singh, S. N. Thakur, Res. Ind. 23, 227 (1978).

Science

L. B. Loeb, Science, 148, 1417 (1965).
[CrossRef] [PubMed]

Other

A. M. Howatson, An Introduction to Gas Discharge (Pergamon, New York, 1976), p. 69.

H. Bauer, “Analyse des Durchbruchs im inhomogenen elektrischen Feld,” (in German) Ph.D. Thesis, TU Stuttgart, Germany (1979).

L. B. Loeb, Basic Process of Gaseous Electronics.(U. California Press, Berkeley, 1975), p. 250.

See Ref. 11, p. 677.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of flat-plate Blumlein-type transversely excited N2 laser; (b) cross-sectional view of the cavity for N2 laser 1; (c) cross-sectional view of the cavity for N2 laser 2; and (d) cross-sectional view of the cavity for N2 laser 3.

Fig. 2
Fig. 2

Intensity distribution across the beam from laser 1; (a) direct biasing, and (b) reverse biasing.

Fig. 3
Fig. 3

Intensity distribution across the beam from laser 2; (a) direct biasing, and (b) reverse biasing.

Fig. 4
Fig. 4

Intensity distribution across the beam from laser 3; (a) direct biasing, and (b) reverse biasing.

Fig. 5
Fig. 5

Schematic representation of voltage distribution between anode (A) and cathode (C) for static condition (…) and for space charge buildup (—) with (a) sharp edge as anode, and (b) sharp edge as cathode.

Tables (2)

Tables Icon

Table I Observed Position of Maximum Population Inversion from the Cathode (d)

Tables Icon

Table II Calculated Position of Threshold Population Inversion from the Cathode (d)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n t = n 0 exp ( α υ t ) ,
υ w = d t = α υ d log e n t n o .
υ = 5 × 10 7 ( E / p ) { 1 + [ 1 + 1180 ( E / p ) 2 ] 2 1 / 2 } 1 / 2 ,
d = υ w log e n t n o α υ .

Metrics