Abstract

Experiments for determining an element of attitude are analyzed and discussed to support a method of three-axes attitude determination of spacecraft using a ground-based laser. In this method, the third element, i.e., the angle around an axis connecting a given spacecraft to another station, is determined by means of the rotatory polarization of laser light. The accuracy of the element determination has been investigated in terms of the signal-to-noise ratio of laser light detection and the scintillation due to atmospheric turbulence. The results indicate that the accuracy is inversely proportional to the voltage signal-to-noise ratio (VSNR). The limit of accuracy is set by the choice of equipment. This limit is <0.1° and is applicable for free space. When atmospheric transmission is included one must also consider the effect of scintillation. The relation between angular accuracy and the magnitude of scintillation is approximately linear in the region where the log-intensity fluctuation is smaller than ∼0.25. Experiments suggest that accuracy <0.5° over a 10-sec period (τ) would be obtained for laser transmission from earth to space given a VSNR higher than 100 and provided transmitting elevation is not too small. For other periods the value is inversely proportional to the square root of τ.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
    [CrossRef]
  2. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  3. V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).
  4. D. H. Höhn, Appl. Opt. 8, 367 (1968).
    [CrossRef]
  5. R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
    [CrossRef]
  6. T. Aruga, T. Igarashi, Appl. Opt. 20, 2698 (1981).
    [CrossRef] [PubMed]
  7. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).
  8. J. L. Bufton, Appl. Opt. 16, 2654 (1977).
    [CrossRef] [PubMed]
  9. J. I. Davis, Appl. Opt. 5,139 (1966).
    [CrossRef] [PubMed]
  10. A. L. Buck, Appl. Opt. 6, 703 (1967).
    [CrossRef] [PubMed]
  11. S. F. Clifford, Opt. Quantum Electron. 8,95 (1976).
    [CrossRef]
  12. P. O. Minott, J. Opt. Soc. Am. 62, 885 (1972).
    [CrossRef]

1981

1977

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

J. L. Bufton, Appl. Opt. 16, 2654 (1977).
[CrossRef] [PubMed]

1976

S. F. Clifford, Opt. Quantum Electron. 8,95 (1976).
[CrossRef]

1972

1970

R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
[CrossRef]

1968

1967

1966

Aruga, T.

T. Aruga, T. Igarashi, Appl. Opt. 20, 2698 (1981).
[CrossRef] [PubMed]

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

Buck, A. L.

Bufton, J. L.

Clifford, S. F.

S. F. Clifford, Opt. Quantum Electron. 8,95 (1976).
[CrossRef]

Davis, J. I.

Höhn, D. H.

Igarashi, T.

T. Aruga, T. Igarashi, Appl. Opt. 20, 2698 (1981).
[CrossRef] [PubMed]

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

Kennedy, R. S.

R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
[CrossRef]

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).

Minott, P. O.

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

Zuev, V. E.

V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).

Appl. Opt.

IEEE Trans. Aerosp. Electron. Syst.

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

J. Opt. Soc. Am.

Opt. Quantum Electron.

S. F. Clifford, Opt. Quantum Electron. 8,95 (1976).
[CrossRef]

Proc. IEEE

R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
[CrossRef]

Other

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the preliminary ground-based experiments.

Fig. 2
Fig. 2

Relation between the accuracy of ψ determination and voltage signal-to-noise ratio of laser light detection. The broken line shows the accuracy limit of the system used.

Fig. 3
Fig. 3

Example of the detected sine wave (8-Hz) distortion due to atmospheric turbulence.

Fig. 4
Fig. 4

Example for comparison between the accuracy of ψ determination and magnitude of scintillation. In this case the frequency of rotatory polarization is 8 rev/sec.

Fig. 5
Fig. 5

Same as Fig. 4 except for 4 rev/sec.

Metrics