Abstract

A dual mini-TEA CO2 laser differential-absorption lidar system has been used to test the remote sensing of hydrazine, unsymmetrical dimethylhydrazine (UDMH), and monomethylhydrazine (MMH) in atmospheric conditions. Average concentrations of these compounds were measured using backscattered laser radiation from a target located at a range of 2.7 km. The experimental results indicate that average atmospheric concentration levels of the hydrazine compounds of the order of 40–100 ppb can be detected over ranges between 0.5 and 5 km. The level of concentration sensitivity over this interval was found to be limited primarily by atmospheric fluctuations. An investigation of the effect of these fluctuations on measurement uncertainties indicated that the fluctuations reduce the benefits of signal averaging over N pulses significantly below the expected square root of N improvement. It is also shown that uncertainties due to long-term atmospheric drifts can be effectively reduced through use of dual-laser lidar return ratios.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
    [CrossRef]
  2. D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
    [CrossRef]
  3. E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978).
    [CrossRef] [PubMed]
  4. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-171917 (1981).
    [CrossRef]
  5. N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
    [CrossRef] [PubMed]
  6. R. A. Baumgartner, R. L. Byer, Opt. Lett. 2, 163 (1978).
    [CrossRef] [PubMed]
  7. K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  8. E. R. Murray, Opt. Eng. 17, 30 (1978).
  9. H. W. Schiessl, “Hydrazine and Its Derivatives,” in Kirk-Othmer: Encyclopedia of Chemical Technology, Vol. 12 (Wiley, New York, 1980).
  10. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, Appl. Opt. 19, 2726 (1980).
    [CrossRef] [PubMed]
  11. J. N. Pitts et al., “Atmospheric Chemistry of Hydrazines: Gas Phase Kinetics and Mechanistic Studies,” ESL-TR-80-39 (Aug.1980).
  12. D. A. Stone, “The Autoxidation of Hydrazine Vapor,” Report CEEDO-TR-78-17 (Jan.1978), and“The Autoxidation of Monomethylhydrazine Vapor,” CEEDO-TR-79-10 (Apr.1979).
  13. N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  14. N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
    [CrossRef]
  15. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).
  16. R. J. Brewer, C. W. Bruce, Appl. Opt. 17, 3746 (1978).
    [CrossRef] [PubMed]
  17. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, Appl. Opt. 13, 2850 (1974).
    [CrossRef] [PubMed]
  18. S. T. Hong, A. Ishimaru, Radio Sci. 11, 551 (1976).
    [CrossRef]
  19. A. G. Kjelaas, P. E. Nordal, A. Bjerkestrand, Appl. Opt. 17, 277 (1978).
    [CrossRef] [PubMed]
  20. G. L. Loper, “Gas Phase Kinetic Study of Air Oxidation of UDMH,” in Proceedings, Conference on Environmental Chemistry of Hydrazine Fuels, Tyndall Air Force Base, CEEDO-TR-78-14 (13 Sept. 1977), p. 129.
  21. R. A. Saunders, J. T. Larkins, “Detection and Monitoring of Hydrazine, Monomethylhydrazine and Their Decomposition Products,” Naval Research Laboratory Memorandum 3313/AD-A-027966 (1976).
  22. To avoid confusion the large container used for remote sensing will be referred to as a tank. The term cell will be reserved for the smaller Pyrex container used in the laboratory absorption measurements.
  23. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.
  24. D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
    [CrossRef]

1981

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-171917 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

1980

1979

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

1978

1976

S. T. Hong, A. Ishimaru, Radio Sci. 11, 551 (1976).
[CrossRef]

1974

Asai, K.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Baumgartner, R. A.

Bjerkestrand, A.

Brewer, R. J.

Bruce, C. W.

Byer, R. L.

R. A. Baumgartner, R. L. Byer, Opt. Lett. 2, 163 (1978).
[CrossRef] [PubMed]

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

Calloway, A. R.

DeFeo, W. E.

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).

Garbuny, M.

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).

Gelbwachs, J. A.

Henningsen, T.

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

Hong, S. T.

S. T. Hong, A. Ishimaru, Radio Sci. 11, 551 (1976).
[CrossRef]

Hufnagel, R. E.

R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Ishimaru, A.

S. T. Hong, A. Ishimaru, Radio Sci. 11, 551 (1976).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Killinger, D. K.

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-171917 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

Kjelaas, A. G.

Larkins, J. T.

R. A. Saunders, J. T. Larkins, “Detection and Monitoring of Hydrazine, Monomethylhydrazine and Their Decomposition Products,” Naval Research Laboratory Memorandum 3313/AD-A-027966 (1976).

Loper, G. L.

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, Appl. Opt. 19, 2726 (1980).
[CrossRef] [PubMed]

G. L. Loper, “Gas Phase Kinetic Study of Air Oxidation of UDMH,” in Proceedings, Conference on Environmental Chemistry of Hydrazine Fuels, Tyndall Air Force Base, CEEDO-TR-78-14 (13 Sept. 1977), p. 129.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).

McClenny, W. A.

Menyuk, N.

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-171917 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Morgan, D. R.

Moulton, P. F.

N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Murray, E. R.

Nordal, P. E.

Patty, R. R.

Pitts, J. N.

J. N. Pitts et al., “Atmospheric Chemistry of Hydrazines: Gas Phase Kinetics and Mechanistic Studies,” ESL-TR-80-39 (Aug.1980).

Russwurm, G. M.

Saunders, R. A.

R. A. Saunders, J. T. Larkins, “Detection and Monitoring of Hydrazine, Monomethylhydrazine and Their Decomposition Products,” Naval Research Laboratory Memorandum 3313/AD-A-027966 (1976).

Schiessl, H. W.

H. W. Schiessl, “Hydrazine and Its Derivatives,” in Kirk-Othmer: Encyclopedia of Chemical Technology, Vol. 12 (Wiley, New York, 1980).

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).

Stamps, M. A.

Stone, D. A.

D. A. Stone, “The Autoxidation of Hydrazine Vapor,” Report CEEDO-TR-78-17 (Jan.1978), and“The Autoxidation of Monomethylhydrazine Vapor,” CEEDO-TR-79-10 (Apr.1979).

van der Laan, J. E.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).

Appl. Opt.

Appl. Phys. Lett.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

IEEE J. Quantum Electron.

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-171917 (1981).
[CrossRef]

Opt. Eng.

E. R. Murray, Opt. Eng. 17, 30 (1978).

Opt. Lett.

Radio Sci.

S. T. Hong, A. Ishimaru, Radio Sci. 11, 551 (1976).
[CrossRef]

Rev. Sci. Instrum.

N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Other

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere (Third Edition),” Report AFCRL-72-0497, Environmental Research Paper No. 411 (1972).

H. W. Schiessl, “Hydrazine and Its Derivatives,” in Kirk-Othmer: Encyclopedia of Chemical Technology, Vol. 12 (Wiley, New York, 1980).

J. N. Pitts et al., “Atmospheric Chemistry of Hydrazines: Gas Phase Kinetics and Mechanistic Studies,” ESL-TR-80-39 (Aug.1980).

D. A. Stone, “The Autoxidation of Hydrazine Vapor,” Report CEEDO-TR-78-17 (Jan.1978), and“The Autoxidation of Monomethylhydrazine Vapor,” CEEDO-TR-79-10 (Apr.1979).

G. L. Loper, “Gas Phase Kinetic Study of Air Oxidation of UDMH,” in Proceedings, Conference on Environmental Chemistry of Hydrazine Fuels, Tyndall Air Force Base, CEEDO-TR-78-14 (13 Sept. 1977), p. 129.

R. A. Saunders, J. T. Larkins, “Detection and Monitoring of Hydrazine, Monomethylhydrazine and Their Decomposition Products,” Naval Research Laboratory Memorandum 3313/AD-A-027966 (1976).

To avoid confusion the large container used for remote sensing will be referred to as a tank. The term cell will be reserved for the smaller Pyrex container used in the laboratory absorption measurements.

R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of dual-laser lidar system used for remote sensing of hydrazine and its derivatives.

Fig. 2
Fig. 2

Time variation of relative transmittance of 10.6-μm P(22) and 10.7-μm P(28) radiation through a 33-cm long laboratory absorption cell containing air after insertion of 0.9 and 7.6 μliter of liquid hydrazine.

Fig. 3
Fig. 3

Time variation of relative transmittance of 10.7-μm P(30) and 10.3-μm R(10) radiation through a laboratory absorption cell containing air after inserting 9 μliter of liquid UDMH.

Fig. 4
Fig. 4

Time variation of relative transmittance of 10.2-μm R(30) and 9.3-μm R(18) through a laboratory absorption cell containing air after inserting 9 μliter of liquid MMH.

Fig. 5
Fig. 5

Simultaneous differential-absorption measurements of hydrazine in a nitrogen-filled laboratory absorption cell and tank: (a) time variation of relative transmittance through a cell after inserting 1.6 μliter of hydrazine; (b) lidar returns from laser pulses passing through tank and reflected from topographic target after inserting 0.8 mliter of hydrazine. The number of pulses averaged for each point is given below.

Fig. 6
Fig. 6

Simultaneous differential-absorption measurements of UDMH in a nitrogen-filled laboratory absorption cell and tank: (a) time variation of relative transmittance through a cell after inserting 5.5 μliter of UDMH; (b) lidar returns from laser pulses passing through tank and reflected from topographic target after inserting 1.95 mliter of UDMH.

Fig. 7
Fig. 7

Simultaneous differential-absorption measurements of MMH in a nitrogen-filled laboratory absorption cell and tank: (a) time variation of relative transmittance through a cell after inserting 6.3 μliter of MMH; (b) lidar returns from laser pulses passing through tank and reflected from topographic target after inserting 1.55 mliter of MMH.

Fig. 8
Fig. 8

Minimum detectable path-averaged hydrazine concentration by topographic reflection as a function of range. The normalization point shown is taken from the experimental results and corresponds to ΔP/P = 0.05 at a range of 2.7 km.

Fig. 9
Fig. 9

Minimum detectable path-averaged UDMH concentration by topographic reflection as a function of range.

Fig. 10
Fig. 10

Minimum detectable path-averaged MMH concentration by topographic reflection as a function of range.

Fig. 11
Fig. 11

Statistical analysis of segmentally averaged initial set of 12,288 normalized pulses from lasers 1 and 2: (a) standard deviation of the segment averages as a function of N, the number of pulses averaged per segment; (b) variation of the average value of the individual segments with time for N = 512.

Fig. 12
Fig. 12

Statistical analysis of segmentally averaged final set of 12,288 normalized pulses from lasers 1 and 2: (a) standard deviation of the segment averages of each of the lasers and of their ratio as a function of N, the number of pulses averaged per segment; (b) variation of the average value of the individual segments with time for N = 512.

Tables (3)

Tables Icon

Table I Relevant Absorption Parameters for the Remote Sensing of the Hydrazines

Tables Icon

Table II Percentage Standard Deviation of Normalized Lidar Returns for the Initial Block of Pulses for Laser 1, Laser 2, and the Ratio of Returns vs Number of Pulses Averaged

Tables Icon

Table III Percentage Standard Deviation of Normalized Lidar Returns for the Final Block of Pulses for Laser 1, Laser 2, and the Ratio of Returns vs Number of Pulses Averaged

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n min = ( NEP ) π R 2 K ρ A P 0 ( Δ σ ) exp ( 2 β R ) ,
n min ( ppb ) = 5.2 R ( Δ σ ) exp ( 2 β R ) ,
n min = 5 × 10 3 ( Δ P r / P r ) ( Δ σ ) R .
σ χ 2 = 0.124 C n 2 k 7 / 6 R 11 / 6 ,
n min R 11 / 12 ( Δ σ ) R R 1 / 12 Δ σ .
n min = 1 Δ σ [ 5 × 10 3 ( Δ P r / P r ) min R + C R 1 / 12 ] ,
σ 2 L 1 / L 2 = σ 2 L 1 + σ 2 L 2 2 ρ s σ L 1 σ L 2

Metrics