Abstract

Calculations are presented which describe the temperature distribution resulting from a rapidly scanning laser beam over the target surface. The energy absorbed in a thin surface layer produces a surface temperature increase. The resulting temperature increase is calculated as a function of time for a number of significant scanning and target material parameters.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Scholl, W. L. Wolfe, Appl. Opt. 20, 2143 (1981).
    [CrossRef] [PubMed]
  2. M. S. Scholl, Appl. Opt. 21, 660 (1982).
    [CrossRef] [PubMed]
  3. “Radiation Theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (ERIM, Ann Arbor, Mich., 1978), Chap. 1.
  4. M. S. Scholl, Appl. Opt. 21, 1615 (1982).
    [CrossRef] [PubMed]
  5. M. Sparks, J. Appl. Phys. 47, 837 (1976).
    [CrossRef]
  6. M. Lax, J. Appl. Phys. 48, 3919 (1977).
    [CrossRef]
  7. Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
    [CrossRef]
  8. R. J. Harrach, J. Appl. Phys. 48, 2370 (1977).
    [CrossRef]
  9. T. R. Anthony, H. E. Cline, J. Appl. Phys. 48, 3888 (1977).
    [CrossRef]
  10. J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975).
  11. A. M. Morrell, H. B. Law, E. G. Ramberg, E. W. Herold, Color Television Picture Tubes (Academic, New York, 1974).
  12. M. S. Scholl, Appl. Opt. 19, 3655 (1980).
    [CrossRef] [PubMed]
  13. P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  14. P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).
  15. M. S. Scholl, “Target Thermal Layer as a Low Pass Filter,” in preparation.
  16. M. S. Scholl, “Measured Target Temperature Response to the Irradiation with a Pulsed Laser Beam,” in preparation.

1982 (2)

1981 (1)

1980 (2)

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
[CrossRef]

M. S. Scholl, Appl. Opt. 19, 3655 (1980).
[CrossRef] [PubMed]

1977 (3)

R. J. Harrach, J. Appl. Phys. 48, 2370 (1977).
[CrossRef]

T. R. Anthony, H. E. Cline, J. Appl. Phys. 48, 3888 (1977).
[CrossRef]

M. Lax, J. Appl. Phys. 48, 3919 (1977).
[CrossRef]

1976 (1)

M. Sparks, J. Appl. Phys. 47, 837 (1976).
[CrossRef]

Anthony, T. R.

T. R. Anthony, H. E. Cline, J. Appl. Phys. 48, 3888 (1977).
[CrossRef]

Cline, H. E.

T. R. Anthony, H. E. Cline, J. Appl. Phys. 48, 3888 (1977).
[CrossRef]

Corson, D. R.

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

Feshback, H.

P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

Gibbons, J. F.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
[CrossRef]

Gold, R. B.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
[CrossRef]

Harrach, R. J.

R. J. Harrach, J. Appl. Phys. 48, 2370 (1977).
[CrossRef]

Herold, E. W.

A. M. Morrell, H. B. Law, E. G. Ramberg, E. W. Herold, Color Television Picture Tubes (Academic, New York, 1974).

Law, H. B.

A. M. Morrell, H. B. Law, E. G. Ramberg, E. W. Herold, Color Television Picture Tubes (Academic, New York, 1974).

Lax, M.

M. Lax, J. Appl. Phys. 48, 3919 (1977).
[CrossRef]

Lietoila, A.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
[CrossRef]

Lloyd, J. M.

J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975).

Lorrain, P.

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

Morrell, A. M.

A. M. Morrell, H. B. Law, E. G. Ramberg, E. W. Herold, Color Television Picture Tubes (Academic, New York, 1974).

Morse, P. M.

P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

Nissim, Y. I.

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
[CrossRef]

Ramberg, E. G.

A. M. Morrell, H. B. Law, E. G. Ramberg, E. W. Herold, Color Television Picture Tubes (Academic, New York, 1974).

Scholl, M. S.

M. S. Scholl, Appl. Opt. 21, 660 (1982).
[CrossRef] [PubMed]

M. S. Scholl, Appl. Opt. 21, 1615 (1982).
[CrossRef] [PubMed]

M. S. Scholl, W. L. Wolfe, Appl. Opt. 20, 2143 (1981).
[CrossRef] [PubMed]

M. S. Scholl, Appl. Opt. 19, 3655 (1980).
[CrossRef] [PubMed]

M. S. Scholl, “Target Thermal Layer as a Low Pass Filter,” in preparation.

M. S. Scholl, “Measured Target Temperature Response to the Irradiation with a Pulsed Laser Beam,” in preparation.

Sparks, M.

M. Sparks, J. Appl. Phys. 47, 837 (1976).
[CrossRef]

Wolfe, W. L.

Appl. Opt. (4)

J. Appl. Phys. (5)

M. Sparks, J. Appl. Phys. 47, 837 (1976).
[CrossRef]

M. Lax, J. Appl. Phys. 48, 3919 (1977).
[CrossRef]

Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980).
[CrossRef]

R. J. Harrach, J. Appl. Phys. 48, 2370 (1977).
[CrossRef]

T. R. Anthony, H. E. Cline, J. Appl. Phys. 48, 3888 (1977).
[CrossRef]

Other (7)

J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975).

A. M. Morrell, H. B. Law, E. G. Ramberg, E. W. Herold, Color Television Picture Tubes (Academic, New York, 1974).

“Radiation Theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (ERIM, Ann Arbor, Mich., 1978), Chap. 1.

P. M. Morse, H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves (Freeman, San Francisco, 1970).

M. S. Scholl, “Target Thermal Layer as a Low Pass Filter,” in preparation.

M. S. Scholl, “Measured Target Temperature Response to the Irradiation with a Pulsed Laser Beam,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Amplitude modulation: scanning setup.

Fig. 2
Fig. 2

Amplitude modulation: voltage driving x and y mirrors as a function of time.

Fig. 3
Fig. 3

Dwell-time modulation: scanning setup.

Fig. 4
Fig. 4

Dwell-time modulation: voltage driving x and y mirrors as a function of time.

Fig. 5
Fig. 5

Scanning the laser beam across the target surface.

Fig. 6
Fig. 6

Normalized power supplied to the hot spot by a scanning laser beam with the cosine square intensity distribution as a function of time.

Fig. 7
Fig. 7

Power density on the central matrix element of a 3-mm hot spot as a function of time (t = 10 sec, t1 varies, T = 880 K).

Fig. 8
Fig. 8

Power density on the central matrix element of a 3-mm hot spot as a function of normalized time (t = 10 sec, t1 varies, T = 880 K).

Fig. 9
Fig. 9

Temperature of the central matrix element of a 3-mm hot spot as a function of time (T = 880 K, t = 10 sec, t1 varies).

Fig. 10
Fig. 10

Temperature of the central matrix element of a 3-mm hot spot as a function of normalized time (T = 880 K, t = 10 sec, t1 varies).

Fig. 11
Fig. 11

Peak-to-peak temperature ripple as a function of frequency (3-mm hot spot, 0.5 duty cycle, T = 880 K, t = 10 sec).

Fig. 12
Fig. 12

Peak-to-peak temperature ripple as a function of time (3-mm hot spot, 103-Hz frequency, t1 = 0.00005 sec, T = 880 K).

Fig. 13
Fig. 13

Peak-to-peak temperature ripple as a function of duty cycle (3-mm hot spot, 103-Hz frequency, T = 880 K, t = 10 sec).

Fig. 14
Fig. 14

Temperature ripple of the central matrix element as a function of the hot spot diameter (103-Hz frequency, T = 880 K, t = 10 sec).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ = 1 k i = λ 0 2 π 2 r μ r 1 [ 1 + 1 ( ρ ω 0 r ) 2 ] 1 / 2 1 ,
p ( z ) = 0 z | E ( z , t ) | 2 ρ d z = E 0 2 δ 2 ρ [ 1 exp ( 2 z / δ ) ] .
p ( z ) = p 0 [ 1 exp ( 2 z / δ ) ] .
d p ( z ) d z = 2 p 0 δ exp ( 2 z / δ ) .
d p ( z ) d z z = 0 = 2 p 0 δ .
Δ T = [ t 1 d p ( z ) d z z = 0 ] 1 d c = 2 p 0 t 1 δ d c .
c d T ( x , y , z , t ) t = [ k T ( x , y , z , t ) ] p ( x , y , z , t ) ,
p ( S , t ) h = σ [ T ( S , t ) 4 T B 4 ] T ( x , y , z , 0 ) = T 0 ,
P H S = 0 T d t d y A H S ( x , y , ) p ( x υ t , y ) d x ,
P H S ( t ) = d y A H S ( x , y ) p ( x υ t , y ) d x .
p ( x , y ) = p 0 2 [ 1 + cos ( π x 2 + y 2 r L 2 ) ] ,

Metrics