Abstract

The design and evaluation of optical recording systems, media, and codes require both qualitative and quantitative understanding of the readout process. Scalar diffraction theory permits a simple formulation of the readout process, which provides a qualitative insight and also permits rapid, detailed, numerical solutions to a wide range of problems. Several examples demonstrate the application of the model to Laser Write and Read (LWR) optical recording media.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Geyer, private communication.
  2. J. G. Dil, B. A. J. Jacobs, J. Opt. Soc. Am. 69, 950 (1979).
    [CrossRef]
  3. P. Sheng, RCA Rev. 39, 512 (1978).
  4. A. H. Firester et al., RCA Rev. 39, 392 (1978).
  5. H. H. Hopkins, J. Opt. Soc. Am. 69, 4 (1979).
    [CrossRef]
  6. A. Korpel, Appl. Opt. 17, 2037 (1978).
    [CrossRef] [PubMed]
  7. D. G. Howe, J. J. Wrobel, J. Vac. Sci. Technol. 18, 92 (1981).
    [CrossRef]
  8. G. W. Hrbek, J. SMPTE 83, 580 (1974).
    [CrossRef]

1981 (1)

D. G. Howe, J. J. Wrobel, J. Vac. Sci. Technol. 18, 92 (1981).
[CrossRef]

1979 (2)

1978 (3)

A. Korpel, Appl. Opt. 17, 2037 (1978).
[CrossRef] [PubMed]

P. Sheng, RCA Rev. 39, 512 (1978).

A. H. Firester et al., RCA Rev. 39, 392 (1978).

1974 (1)

G. W. Hrbek, J. SMPTE 83, 580 (1974).
[CrossRef]

Dil, J. G.

Firester, A. H.

A. H. Firester et al., RCA Rev. 39, 392 (1978).

Geyer, F. F.

F. F. Geyer, private communication.

Hopkins, H. H.

Howe, D. G.

D. G. Howe, J. J. Wrobel, J. Vac. Sci. Technol. 18, 92 (1981).
[CrossRef]

Hrbek, G. W.

G. W. Hrbek, J. SMPTE 83, 580 (1974).
[CrossRef]

Jacobs, B. A. J.

Korpel, A.

Sheng, P.

P. Sheng, RCA Rev. 39, 512 (1978).

Wrobel, J. J.

D. G. Howe, J. J. Wrobel, J. Vac. Sci. Technol. 18, 92 (1981).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

J. SMPTE (1)

G. W. Hrbek, J. SMPTE 83, 580 (1974).
[CrossRef]

J. Vac. Sci. Technol. (1)

D. G. Howe, J. J. Wrobel, J. Vac. Sci. Technol. 18, 92 (1981).
[CrossRef]

RCA Rev. (2)

P. Sheng, RCA Rev. 39, 512 (1978).

A. H. Firester et al., RCA Rev. 39, 392 (1978).

Other (1)

F. F. Geyer, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical path of an optical disk readout system. In a reflective system the path is folded through the planar recording surface.

Fig. 2
Fig. 2

Model of an optical disk being scanned by the readout system. Marks are represented by planar areas of differing complex reflectivity.

Fig. 3
Fig. 3

Response of a central-aperture detector as the readout system scans a rimmed pit.

Fig. 4
Fig. 4

Response of a split-aperture detector as the readout system scans a rimmed pit.

Fig. 5
Fig. 5

DC response of a cross-track split detector to tracking variations for tracks of width W = 0.6 and 1.0 μm. This system may be used to drive a tracking servo.

Fig. 6
Fig. 6

Signal response of a split-aperture detector as a function of pit–pit spacing and defocus δ. Defocus is a serious problem for δ > 1 μm.

Tables (1)

Tables Icon

Table I Optical Model of Nominal LWR Recording Media

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E in = { I o exp ( α θ 2 / 2 θ m 2 ) exp ( i ϕ obj ) θ < θ m , 0 θ > θ m .
ϕ obj ( θ ) = 2 π ( 1 cos θ ) δ / λ + sin 4 θ · s m / N.A. 4 .
E out ( p , q ) = n E in ( p , q ) r n ( p q ) × F P n ( p p , q q ) d p d q ,
F P n 1 λ 2 P n ( x , y ) exp ( i 2 π ( x p + y q ) / λ ) d x d y .
E out , 0 ( θ ) = E in ( θ ) · r o ( θ ) [ P 0 ( x , y ) 1 ] .
I = A | E det | 2 · D d a ,
E out , n = Q n ( p , q ) F P x n ( p p ) d p ,
Q n ( p , q ) E in ( p , q ) r n ( P , q ) F P y n ( q q ) d q

Metrics