Abstract

In designing long-haul optical transmission systems, it is important to estimate the characteristics of multispliced long-distance fibers based on data from individual fiber units. In the case of graded-index fibers, however, the mechanism of modal dispersion is complicated and therefore the derivation of an available bandwidth prediction method is difficult. This paper proposes a method based on the wavelength dependence of bandwidths of individual fibers, which is expressed by three parameters: maximum bandwidth Bmax; optimum wavelength λopt; and the coefficient of wavelength dependence k. Transmission characteristics of the fiber bandwidth resulting from splicing are theoretically and experimentally discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miyashita, T. Miya, M. Nakahara, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper PD1.
  2. T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.
  3. N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
    [CrossRef]
  4. D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).
  5. J. J. Ramskov Hansen, Opt. Quantum Electron. 10, 521 (1978).
    [CrossRef]
  6. T. Matsumoto, K. Nakagawa, Appl. Opt. 18, 1449 (1979).
    [CrossRef] [PubMed]
  7. M. Eve, Opt. Quantum Electron. 10, 41 (1978).
    [CrossRef]
  8. M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
    [CrossRef]
  9. K. Nakamura, S. Sentsui, in Proceedings, 1978 National Conference Record on Optics and Electromagnetic Waves, IECEJapan, 346 (1978), in Japanese.
  10. S. Geckeler, Appl. Opt. 18, 2192 (1979).
    [CrossRef] [PubMed]
  11. T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.
  12. D. Gloge, Bell Syst. Tech. J. 52, 801 (1973).
  13. F. V. DiMarcello, J. C. Williams, Bell Syst. Tech. J. 57, 1723 (1978).
  14. H. M. Presby, I. P. Kaminow, Appl. Opt. 15, 3029 (1976).
    [CrossRef] [PubMed]
  15. R. Olshansky, D. B. Keck, Appl. Opt. 15, 483 (1976).
    [CrossRef] [PubMed]

1979 (5)

N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
[CrossRef]

T. Matsumoto, K. Nakagawa, Appl. Opt. 18, 1449 (1979).
[CrossRef] [PubMed]

M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
[CrossRef]

S. Geckeler, Appl. Opt. 18, 2192 (1979).
[CrossRef] [PubMed]

T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.

1978 (3)

M. Eve, Opt. Quantum Electron. 10, 41 (1978).
[CrossRef]

F. V. DiMarcello, J. C. Williams, Bell Syst. Tech. J. 57, 1723 (1978).

J. J. Ramskov Hansen, Opt. Quantum Electron. 10, 521 (1978).
[CrossRef]

1976 (2)

1973 (2)

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

D. Gloge, Bell Syst. Tech. J. 52, 801 (1973).

Aida, K.

T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.

DiMarcello, F. V.

F. V. DiMarcello, J. C. Williams, Bell Syst. Tech. J. 57, 1723 (1978).

Eriksrud, M.

M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
[CrossRef]

Eve, M.

M. Eve, Opt. Quantum Electron. 10, 41 (1978).
[CrossRef]

Geckeler, S.

Gloge, D.

D. Gloge, Bell Syst. Tech. J. 52, 801 (1973).

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Hashimoto, K.

T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.

Hordvik, A.

M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
[CrossRef]

Ito, T.

T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.

Iwahara, Y.

N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
[CrossRef]

Kaminow, I. P.

Keck, D. B.

Marcatili, E. A. J.

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Matsumoto, T.

T. Matsumoto, K. Nakagawa, Appl. Opt. 18, 1449 (1979).
[CrossRef] [PubMed]

T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.

Miya, T.

T. Miyashita, T. Miya, M. Nakahara, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper PD1.

Miyashita, T.

T. Miyashita, T. Miya, M. Nakahara, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper PD1.

Nakagawa, K.

T. Matsumoto, K. Nakagawa, Appl. Opt. 18, 1449 (1979).
[CrossRef] [PubMed]

T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.

T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.

Nakahara, M.

T. Miyashita, T. Miya, M. Nakahara, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper PD1.

Nakamura, K.

K. Nakamura, S. Sentsui, in Proceedings, 1978 National Conference Record on Optics and Electromagnetic Waves, IECEJapan, 346 (1978), in Japanese.

Nawata, K.

N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
[CrossRef]

Nokken, G.

M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
[CrossRef]

Olshansky, R.

Presby, H. M.

Ramskov Hansen, J. J.

J. J. Ramskov Hansen, Opt. Quantum Electron. 10, 521 (1978).
[CrossRef]

Ryen, N.

M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
[CrossRef]

Saruwatari, M.

N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
[CrossRef]

Sato, K.

T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.

Sentsui, S.

K. Nakamura, S. Sentsui, in Proceedings, 1978 National Conference Record on Optics and Electromagnetic Waves, IECEJapan, 346 (1978), in Japanese.

Suto, K.

T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.

Suzuki, N.

N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
[CrossRef]

Takemoto, K.

T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.

Williams, J. C.

F. V. DiMarcello, J. C. Williams, Bell Syst. Tech. J. 57, 1723 (1978).

Appl. Opt. (4)

Bell Syst. Tech. J. (3)

D. Gloge, Bell Syst. Tech. J. 52, 801 (1973).

F. V. DiMarcello, J. C. Williams, Bell Syst. Tech. J. 57, 1723 (1978).

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Electron. Lett. (1)

N. Suzuki, Y. Iwahara, M. Saruwatari, K. Nawata, Electron. Lett. 15, 809 (1979).
[CrossRef]

Opt. Quantum Electron. (3)

J. J. Ramskov Hansen, Opt. Quantum Electron. 10, 521 (1978).
[CrossRef]

M. Eve, Opt. Quantum Electron. 10, 41 (1978).
[CrossRef]

M. Eriksrud, A. Hordvik, N. Ryen, G. Nokken, Opt. Quantum Electron. 11, 517 (1979).
[CrossRef]

Optical Communication Conference (1)

T. Matsumoto, K. Sato, K. Nakagawa, K. Hashimoto, Optical Communication Conference1979, 17–5.

Other (3)

K. Nakamura, S. Sentsui, in Proceedings, 1978 National Conference Record on Optics and Electromagnetic Waves, IECEJapan, 346 (1978), in Japanese.

T. Miyashita, T. Miya, M. Nakahara, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper PD1.

T. Ito, K. Nakagawa, K. Aida, K. Takemoto, K. Suto, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper TuB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Intermodal dispersion σI and intramodal dispersion σII.

Fig. 2
Fig. 2

Wavelength dependence of test fibers: vertical, optical 3-dB bandwidth (GHz); horizontal, wavelength (μm). Fibers 1–10.

Fig. 3
Fig. 3

Bandwidth transition (case 1).

Fig. 4
Fig. 4

Bandwidth transition (case 2).

Fig. 5
Fig. 5

Bandwidth transition (case 3).

Fig. 6
Fig. 6

Transition of intermodal dispersion.

Fig. 7
Fig. 7

Effect of excitation condition on intramodal dispersion.

Fig. 8
Fig. 8

Permutation for minimum intramodal dispersion.

Tables (4)

Tables Icon

Table I Parameters for Bandwidth Characteristics

Tables Icon

Table II Specifications of Test Fibers

Tables Icon

Table III Fiber Parameters Used for the Expression of Wavelength Dependence of Bandwidth

Tables Icon

Table IV Parameters Used for Bandwidth Prediction

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

σ tot = k = 1 N σ k ,
σ tot 2 = k = 1 N σ k 2 .
σ tot 2 = k = 1 N σ k 2 + p = 1 p = q N q = 1 N σ p σ q r pq ,
B tot 1 / γ = k = 1 N E k 1 / γ ,
1 B λ 2 = 1 B max 2 + k 2 ( λ λ opt ) 2 .
σ 1 oj = σ 1 ij + 1 a j / B max j ,
σ 2 oj 2 = σ 2 ij 2 + a j / B max j 2 .
σ 1 j + 1 = 1 b j , j + 1 · σ 10 j ,
σ 2 j + 1 2 = σ 2 oj 2 + b j , j + 1 σ 1 oj 2 ,
σ 2 = σ I 2 + σ II 2
P ( z , x , t ) = exp { [ t z υ ( a + bz ) x ] 2 σ II i j 2 } ,
Δ P = 0 L j D j · d 2 P d x 2 dz = 2 D 3 b σ II i j 2 ( 2 u 2 σ II ij 2 1 ) [ ( a + b L j ) 3 a 3 ] exp ( U 2 σ II ij 2 ) ,
P = P + Δ P = [ 1 + g ( 2 u 2 σ II ij 2 1 ) ] exp ( u 2 σ II ij 2 ) ( 1 g ) exp ( u 2 σ II i 2 · 1 3 g 1 g ) ,
g = 2 D j r 2 L j 3 σ II ij 2 [ ( σ I ij + σ fj ) 3 σ I ij 3 ] .
σ II oj 2 = σ II ij 2 ( 1 g 1 3 g ) σ II ij 2 + A j L j ( 2 σ I ij 2 + 3 σ I ij σ fj + σ fj 2 ) ,
A j = 4 D j r 2 / 3 .
Δ P = 0 L j C j dP d x dz = C j u σ II ij b 2 [ ( a + b L j ) 2 a 2 ] exp ( u 2 σ II ij 2 ) ,
P = P + Δ P = ( 1 + hu ) exp ( u 2 σ II ij 2 ) exp [ ( u h σ II ij 2 / 2 ) 2 σ II ij 2 ] ,
h = C j r L j σ II ij 2 σ fj [ ( σ I ij + σ fj ) 2 σ II ij 2 ] .
σ I oj = σ I ij + σ fj B j L j ( 2 σ I ij + σ fi )
B j = C j rs / 2 .
σ I o j 2 + σ II o j 2 = k j 2 ( λ λ opt j ) 2 .
σ fj = k j ( λ λ opt j ) A j L j + ( 1 B j L j ) 2 ,
σ I ij + 1 = 1 c j , j + 1 σ I o j ,
σ II ij + 1 2 = σ II o j 2 + c j j + 1 σ II o j 2 .
σ 1 i 1 = σ 2 i 1 = σ I i 1 = σ II i 1 = 0 ,
1 B 2 = σ 1 O N 2 σ 2 ON 2 + σ I O N 2 + σ II O N 2 ,
d σ II 2 dz = 3 A λ I 2 ,
d σ I dz = 2 B σ I + σ f L ,
σ I = ( σ I i σ I ) exp ( 2 BZ ) + σ I ,
σ I = σ f 2 BL .
Δ ( σ II 2 ) = 3 A { σ I 2 L + σ I B ( σ I σ I i ) [ exp ( 2 BL ) 1 ] 1 4 B ( σ I σ I i ) 2 [ exp ( 4 BL ) 1 ] } .
σ I i = σ I tanh BL .
Δ ( σ II 2 ) = 3 AL σ I 2 ( 1 tanh BL BL ) ,
σ I o = σ I tanh BL .
Δ ( σ II 2 ) = 3 A { σ I 2 L + σ I B ( σ I σ I i ) [ exp ( 2 BL ) 1 ] 1 4 B ( σ I σ I i ) 2 [ exp ( 4 BL ) 1 ] } + f · [ ( σ I i σ I ) exp ( 2 BL ) + σ I ] 2 ,
σ I i = σ I [ 1 exp ( 2 BL ) ] [ 1 ( 1 4 fB 3 A ) exp ( 2 BL ) ] 1 ( 1 4 fB 3 A ) exp ( 4 BL ) .
σ I o = σ I 1 f [ 1 exp ( 2 BL ) ] 2 1 ( 1 4 fB 3 A ) exp ( 4 BL ) .
σ I ( m ) = ( 1 ) m · s · exp { m 1 n 1 f [ 1 exp ( 2 BL ) ] 1 ( 1 4 fB 3 A ) exp ( 2 BL ) } .
1 f [ 1 exp ( 2 BL ) ] 1 ( 1 4 fB 3 A ) exp ( 2 BL ) 1

Metrics