Abstract

A bistable nonmechanical optical switch for multimode optical fiber is presented. It is a 2-input/2-output device for the 1-μm wavelength range. The optical characteristics are independent of the polarization state of incident light. The switch consists of Faraday rotators of thin plates of yttrium-iron-garnet single crystal, electromagnets whose cores are made of semihard magnetic material, halfwave plates of crystal quartz, polarizing prisms of rutile, and lenses. Switching is performed by one-shot 3-V 20-μsec pulses with a maximum current of 500 mA. The 1.5-dB insertion losses and −32-dB cross talk were obtained at a wavelength of 1.3 μm.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).
  2. S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.
  3. R. A. Soref, D. H. McMahon, Opt. Lett. 5, 147 (1980).
    [CrossRef] [PubMed]
  4. R. E. Wagner, J. Cheng, Appl. Opt. 19, 2921 (1980).
    [CrossRef] [PubMed]
  5. M. Shirasaki, N. Takagi, T. Obokata, Appl. Phys. Lett. 38, 833 (1981).
    [CrossRef]
  6. M. Shirasaki, H. Kuwahara, T. Obokata, Trans. IECE Jpn. E64, 30 (1981).
  7. M. Shirasaki, H. Kuwahara, T. Obokata, Appl. Opt. 20, 2683 (1981).
    [CrossRef] [PubMed]
  8. T. Matsumoto, Electron. Lett. 16, 8 (1980).
    [CrossRef]
  9. T. Matsumoto, K. Sato, Appl. Opt. 19, 108 (1980).
    [CrossRef] [PubMed]

1981 (3)

M. Shirasaki, N. Takagi, T. Obokata, Appl. Phys. Lett. 38, 833 (1981).
[CrossRef]

M. Shirasaki, H. Kuwahara, T. Obokata, Trans. IECE Jpn. E64, 30 (1981).

M. Shirasaki, H. Kuwahara, T. Obokata, Appl. Opt. 20, 2683 (1981).
[CrossRef] [PubMed]

1980 (4)

1978 (1)

M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).

Cheng, J.

Fujino, Y.

M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).

Goto, H.

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Iguchi, S.

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Kato, M.

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Kondo, M.

M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).

Kuhara, Y.

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Kuwahara, H.

M. Shirasaki, H. Kuwahara, T. Obokata, Trans. IECE Jpn. E64, 30 (1981).

M. Shirasaki, H. Kuwahara, T. Obokata, Appl. Opt. 20, 2683 (1981).
[CrossRef] [PubMed]

Matsumoto, T.

McMahon, D. H.

Obokata, T.

M. Shirasaki, H. Kuwahara, T. Obokata, Appl. Opt. 20, 2683 (1981).
[CrossRef] [PubMed]

M. Shirasaki, H. Kuwahara, T. Obokata, Trans. IECE Jpn. E64, 30 (1981).

M. Shirasaki, N. Takagi, T. Obokata, Appl. Phys. Lett. 38, 833 (1981).
[CrossRef]

Ohta, Y.

M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).

Sakaguchi, M.

M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).

Sato, K.

Shirasaki, M.

M. Shirasaki, H. Kuwahara, T. Obokata, Appl. Opt. 20, 2683 (1981).
[CrossRef] [PubMed]

M. Shirasaki, H. Kuwahara, T. Obokata, Trans. IECE Jpn. E64, 30 (1981).

M. Shirasaki, N. Takagi, T. Obokata, Appl. Phys. Lett. 38, 833 (1981).
[CrossRef]

Soref, R. A.

Tada, K.

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Takagi, N.

M. Shirasaki, N. Takagi, T. Obokata, Appl. Phys. Lett. 38, 833 (1981).
[CrossRef]

Takeuchi, S.

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Wagner, R. E.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. Shirasaki, N. Takagi, T. Obokata, Appl. Phys. Lett. 38, 833 (1981).
[CrossRef]

Electron. Lett. (1)

T. Matsumoto, Electron. Lett. 16, 8 (1980).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Kondo, Y. Ohta, M. Sakaguchi, Y. Fujino, Jpn. J. Appl. Phys. 17, 107 (1978).

Opt. Lett. (1)

Trans. IECE Jpn. (1)

M. Shirasaki, H. Kuwahara, T. Obokata, Trans. IECE Jpn. E64, 30 (1981).

Other (1)

S. Iguchi, H. Goto, M. Kato, S. Takeuchi, Y. Kuhara, K. Tada, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 314.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Switching principle for the light beam. The polarization plane of the light beam is linearly polarized by the polarizer and is rotated by the Faraday rotator by +45° or −45° according to the direction of the external magnetic field. The paths of these polarized light beams are determined by the polarization separator.

Fig. 2
Fig. 2

(a) Principle of the polarization-independent optical switch: P.C., polarization plane converter; P.S., element to separate or combine the different polarizations. (b) Function of the polarizing prism. Either unpolarized light is separated into two polarizations whose polarization planes are perpendicular to each other, or these two polarizations are combined.

Fig. 3
Fig. 3

Principle of the new optical switch. The 45° Faraday rotator consists of a YIG thin plate with phase compensation films. The demagnetizing field decreases and the operating magnetic field is reduced.

Fig. 4
Fig. 4

Difference between the phase shifts of P and S polarizations as a function of the incidence angle θ. The light is total internally reflected at the surface of the YIG crystal whose refractive index is 2.20.

Fig. 5
Fig. 5

Structure of phase compensation film for a 1.3-μm wavelength. The thickness of each layer is determined to eliminate the phase difference.

Fig. 6
Fig. 6

Phase difference between P and S polarizations caused by reflection at the YIG surface with phase compensation film as a function of incidence angle θ.

Fig. 7
Fig. 7

Faraday rotation as a function of applied magnetic field at 1.3-μm wavelength. Solid line, measured by the YIG thin plate Faraday rotator; broken line, measured by a conventional YIG disk.

Fig. 8
Fig. 8

Principle of bistable optical switching. The magnetic field applied to the YIG is reversed by one pulse to the coil. The magnet is made of semihard magnetic material.

Fig. 9
Fig. 9

Shape of the polarizing prism. The triangular and quadrilateral prisms, whose optical axes are perpendicular to the plane of the figure, are secured by an air gap. P polarization is transmitted through the air gap without reflection by the Brewster angle incidence, and S polarization is total internally reflected at the air gap.

Fig. 10
Fig. 10

Configuration of the polarization-independent optical switch. The halfwave plate is used as a 45° polarization plane rotator. There are electromagnets at the YIG positions through which the beams pass.

Fig. 11
Fig. 11

Switching operation. There are two states determined by the direction of YIG magnetization. This figure shows the case in which the light is incident from terminal 1.

Fig. 12
Fig. 12

Optical switch. The size excluding the fiber connectors is 70 × 29 × 27 mm.

Fig. 13
Fig. 13

Oscilloscope traces of switching by a one-shot pulse. Lower trace, 20-μsec pulse with 500-mA current. Upper trace, light intensity detected at one of the terminal fibers.

Fig. 14
Fig. 14

Wavelength dependence of the switched. The cross talk is less than −20 dB in the range from 1.2 to 1.4 μm. Increased insertion loss at the shorter wavelength is due to light absorption by YIG.

Metrics