Abstract

An analytical procedure is presented for the calculation of the maximum of transmittance in a limited spectral region and of the efficiency of a given multilayer configuration when the thickness is altered of certain films in the stack. This refining process method is employed in examples where the spectral transmittance is improved when only a few matching layers are used for refining.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Pegis, J. Opt. Soc. Am. 51, 1255 (1961);G. Tricoles, J. Phys. 25, 262 (1964);M. L. Scott, J. Opt. Soc. Am. 69, 1437 (1979).
    [Crossref]
  2. P. W. Baumeister, J. Opt. Soc. Am. 48, 955 (1958);J. Opt. Soc. Am.52, 1149 (1962).
    [Crossref]
  3. J. A. Dobrowolski, Appl. Opt. 4, 937 (1965).
    [Crossref]
  4. C. J. van der Laan, H. J. Frankena, Appl. Opt. 17, 538 (1978).
    [Crossref]
  5. J. P. Borgogno, E. Pelletier, J. Opt. Soc. Am. 68, 964 (1978).
    [Crossref]
  6. Z. Knittl, J. Phys. 25, 245 (1964);J. A. Dobrowolski, Appl. Opt. 20, 74 (1981).
    [Crossref] [PubMed]
  7. G. Castagno, F. Demichelis, E. Minetti-Mezzetti, Appl. Opt. 19, 386 (1980).
    [Crossref] [PubMed]
  8. F. Abelès, Ann. Phys. 5, 596, 706 (1950);F. Abelès, in Advanced Optical Techniques, Vol. 2, A. C. S. van Heel, Ed. (North-Holland, Amsterdam, 1967), p. 178;P. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 69;P. W. Baumeister, V. Costich, “Metal-Dielectric Interference Filters,” in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1977), Vol. 9, p. 73.
  9. F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
    [Crossref]

1981 (1)

F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
[Crossref]

1980 (1)

1978 (2)

1965 (1)

1964 (1)

Z. Knittl, J. Phys. 25, 245 (1964);J. A. Dobrowolski, Appl. Opt. 20, 74 (1981).
[Crossref] [PubMed]

1961 (1)

1958 (1)

1950 (1)

F. Abelès, Ann. Phys. 5, 596, 706 (1950);F. Abelès, in Advanced Optical Techniques, Vol. 2, A. C. S. van Heel, Ed. (North-Holland, Amsterdam, 1967), p. 178;P. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 69;P. W. Baumeister, V. Costich, “Metal-Dielectric Interference Filters,” in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1977), Vol. 9, p. 73.

Abelès, F.

F. Abelès, Ann. Phys. 5, 596, 706 (1950);F. Abelès, in Advanced Optical Techniques, Vol. 2, A. C. S. van Heel, Ed. (North-Holland, Amsterdam, 1967), p. 178;P. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 69;P. W. Baumeister, V. Costich, “Metal-Dielectric Interference Filters,” in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1977), Vol. 9, p. 73.

Agnello, A.

F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
[Crossref]

Baumeister, P. W.

Borgogno, J. P.

Castagno, G.

Demichelis, F.

F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
[Crossref]

G. Castagno, F. Demichelis, E. Minetti-Mezzetti, Appl. Opt. 19, 386 (1980).
[Crossref] [PubMed]

Dobrowolski, J. A.

Frankena, H. J.

Knittl, Z.

Z. Knittl, J. Phys. 25, 245 (1964);J. A. Dobrowolski, Appl. Opt. 20, 74 (1981).
[Crossref] [PubMed]

Minetti-Mezzetti, E.

F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
[Crossref]

G. Castagno, F. Demichelis, E. Minetti-Mezzetti, Appl. Opt. 19, 386 (1980).
[Crossref] [PubMed]

Pegis, R. J.

Pelletier, E.

Perotto, V.

F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
[Crossref]

van der Laan, C. J.

Ann. Phys. (1)

F. Abelès, Ann. Phys. 5, 596, 706 (1950);F. Abelès, in Advanced Optical Techniques, Vol. 2, A. C. S. van Heel, Ed. (North-Holland, Amsterdam, 1967), p. 178;P. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 69;P. W. Baumeister, V. Costich, “Metal-Dielectric Interference Filters,” in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1977), Vol. 9, p. 73.

Appl. Opt. (3)

J. Opt. Soc. Am. (3)

J. Phys. (1)

Z. Knittl, J. Phys. 25, 245 (1964);J. A. Dobrowolski, Appl. Opt. 20, 74 (1981).
[Crossref] [PubMed]

Sol. Cells (1)

F. Demichelis, E. Minetti-Mezzetti, A. Agnello, V. Perotto, Sol. Cells 5, 135 (1981).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmittance of a refined design obtained with the method of the sphere. The dotted curve is the starting design (column 3 of Table I) and the solid curve (column 5 of Table I) is the refined design, when the thicknesses of three layers are varied.

Fig. 2
Fig. 2

Transmittance of a refined design obtained with the method of the planes. The dotted curve is the starting design as in Fig. 1 and the solid curve (column 5 of Table I) is the refined design when the thicknesses of three layers are varied.

Fig. 3
Fig. 3

Transmittance of a refined design obtained with the method of the planes. The dotted curve is the starting design as in Fig. 1 and the solid curve (column 6 of Table I) is the refined design, when the thicknesses of six layers are varied.

Fig. 4
Fig. 4

Transmittance of the starting design (column 3 of Table II) of a bandpass filter.

Fig. 5
Fig. 5

Transmittance of the refined design (column 4 of Table II) of the same bandpass filter.

Tables (2)

Tables Icon

Table I Optical Description of the Designs Shown in Figs. 13 (n0 = 1.0 and nS = 1.45 a)

Tables Icon

Table II Optical Description of the Designs Shown in Figs. 4 and 5 (n0 = 1.0 and nS = 1.45 a)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ = λ 1 λ 2 T ( λ ) d λ ,
τ * = λ 1 λ 2 T ( λ ) d λ λ min λ max T ( λ ) d λ .
h i h i , o = δ 1 , h j h j , o = δ 2 , h k h k , o = δ 3 .
τ = τ ( δ 1 , δ 2 , δ 3 ) .

Metrics