Abstract

A high-resolution laser Doppler velocimeter with an optical-fiber pickup has been developed, and we have succeeded for the first time in measuring velocities of pulsatile blood flows in femoral and coronary arteries of mongrel dogs. The measurements were in real time with 100-μm spatial and 8-msec temporal resolutions, using a 150-m long fiber to reach the animal operation laboratory from the optics laboratory.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
    [PubMed]
  2. T. Tanaka, G. B. Benedek, Science 186, 830 (1974).
    [CrossRef] [PubMed]
  3. M. Stern, Nature 254, 56 (1975).
    [CrossRef] [PubMed]
  4. D. Watkins, G. A. Holloway, IEEE Trans. Biomed. Eng. BME-25, 28 (1978).
    [CrossRef]
  5. T. Koyama, H. Mishina, Experientia 31, 1420 (1975).
    [CrossRef] [PubMed]
  6. C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O'Keefe, Appl. Opt. 20, 117 (1981).
    [CrossRef] [PubMed]
  7. T. Tanaka, G. B. Benedek, Appl. Opt. 14, 189 (1975).
    [PubMed]
  8. H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
    [CrossRef]
  9. F. Kajiya, N. Hoki, G. Tomonaga, Experientia 37, 1171 (1981).
    [CrossRef] [PubMed]

1981 (2)

1980 (1)

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

1978 (1)

D. Watkins, G. A. Holloway, IEEE Trans. Biomed. Eng. BME-25, 28 (1978).
[CrossRef]

1975 (3)

T. Koyama, H. Mishina, Experientia 31, 1420 (1975).
[CrossRef] [PubMed]

M. Stern, Nature 254, 56 (1975).
[CrossRef] [PubMed]

T. Tanaka, G. B. Benedek, Appl. Opt. 14, 189 (1975).
[PubMed]

1974 (1)

T. Tanaka, G. B. Benedek, Science 186, 830 (1974).
[CrossRef] [PubMed]

1972 (1)

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Benedek, G. B.

T. Tanaka, G. B. Benedek, Appl. Opt. 14, 189 (1975).
[PubMed]

T. Tanaka, G. B. Benedek, Science 186, 830 (1974).
[CrossRef] [PubMed]

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Grunwald, J. E.

Hoki, N.

F. Kajiya, N. Hoki, G. Tomonaga, Experientia 37, 1171 (1981).
[CrossRef] [PubMed]

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

Holloway, G. A.

D. Watkins, G. A. Holloway, IEEE Trans. Biomed. Eng. BME-25, 28 (1978).
[CrossRef]

Kajiya, F.

F. Kajiya, N. Hoki, G. Tomonaga, Experientia 37, 1171 (1981).
[CrossRef] [PubMed]

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

Koyama, J.

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

Koyama, T.

T. Koyama, H. Mishina, Experientia 31, 1420 (1975).
[CrossRef] [PubMed]

Mishina, H.

T. Koyama, H. Mishina, Experientia 31, 1420 (1975).
[CrossRef] [PubMed]

Nishi, Y.

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

Nishihara, H.

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

O'Keefe, K.

Riva, C. E.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O'Keefe, Appl. Opt. 20, 117 (1981).
[CrossRef] [PubMed]

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Ross, B.

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Sinclair, S. H.

Stern, M.

M. Stern, Nature 254, 56 (1975).
[CrossRef] [PubMed]

Tanaka, T.

Tomonaga, G.

F. Kajiya, N. Hoki, G. Tomonaga, Experientia 37, 1171 (1981).
[CrossRef] [PubMed]

Watkins, D.

D. Watkins, G. A. Holloway, IEEE Trans. Biomed. Eng. BME-25, 28 (1978).
[CrossRef]

Appl. Opt. (2)

Experientia (2)

T. Koyama, H. Mishina, Experientia 31, 1420 (1975).
[CrossRef] [PubMed]

F. Kajiya, N. Hoki, G. Tomonaga, Experientia 37, 1171 (1981).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

D. Watkins, G. A. Holloway, IEEE Trans. Biomed. Eng. BME-25, 28 (1978).
[CrossRef]

Invest. Ophthalmol. (1)

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Nature (1)

M. Stern, Nature 254, 56 (1975).
[CrossRef] [PubMed]

Rev. Laser Eng. (1)

H. Nishihara, Y. Nishi, J. Koyama, N. Hoki, F. Kajiya, Rev. Laser Eng. 8, 426 (1980).
[CrossRef]

Science (1)

T. Tanaka, G. B. Benedek, Science 186, 830 (1974).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the whole optical-fiber LDV system.

Fig. 2
Fig. 2

Schematic view of the fiber catheter and catheter holder; the blood flow is disturbed at the vicinity of the tip, and the light signal which has been backscattered from this region has information other than the correct flow velocity.

Fig. 3
Fig. 3

Doppler shift frequency spectrum (velocity spectrum) of the blood flow observed on the spectral analyzer display.

Fig. 4
Fig. 4

An example on the spectrum analyzer display. This measurement was made using a steady blood-flow simulator.

Fig. 5
Fig. 5

An example on the spectroscan CRT display. This experiment used a pulsatile blood-flow simulator, which can produce forward and reverse flows alternately.

Fig. 6
Fig. 6

Photography of the optical-fiber LDV. The CRT display on the console is for the velocity spectrum, and the display at the top is for the spectroscan.

Fig. 7
Fig. 7

Doppler shift frequency spectra (velocity spectra) obtained when a steady flow of blood in the groove of a rotating turntable was measured with the optical-fiber LDV. See text for descriptions of A, B, and C.

Fig. 8
Fig. 8

Measured linear relation between the known blood velocities and the Doppler shift frequencies.

Fig. 9
Fig. 9

In vivo experimental arrangement.

Fig. 10
Fig. 10

An example of the pulsatile blood flow measured in the femoral artery of a mongrel dog.

Fig. 11
Fig. 11

Blood velocity profile measured in the coronary artery of a mongrel dog.

Fig. 12
Fig. 12

Measurement of the pulsatile blood-flow velocity in the coronary artery together with electrocardiogram (ECG) and aortic (AOP) pressure variation.

Tables (1)

Tables Icon

Table I Performances of Optical-Fiber LDV for Pulsatile Blood-Flow Measurements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f = 2 n υ cos θ / λ ,

Metrics